Heavy with Child? Pregnancy Status and Stable Isotope Ratios as Determined from Biopsies of Humpback Whales

Understanding reproductive rates of wild animal populations is crucially important for management and conservation. Assessing pregnancy status of free-ranging cetaceans has historically been difficult; however, recent advances in analytical techniques have allowed the diagnosis of pregnancy from small samples of blubber tissue. The primary objectives of this study were as follows: (i) to test the efficacy of blubber progesterone assays as a tool for diagnosing pregnancy in humpback whales (Megaptera novaeangliae); (ii) to estimate the pregnancy rate of humpback whales in Monterey Bay, California; and (iii) to investigate the relationship between stable isotopes and reproductive status of these whales. Progesterone concentrations of female whales fell into two distinct groups, allowing for diagnostic separation of pregnant and non-pregnant individuals. Pregnancy rate varied between years of the study (48.4%% in 2011 and 18.5% in 2012), but fell within the range of other estimates of reproductive success for this population. Stable carbon and nitrogen isotope ratios were examined to investigate the impacts of pregnancy on these values. Neither δ15N nor δ13C varied in a consistent way among animals of different sex or reproductive status. The relationship between δ15N and δ13C was strongly positive for male and non-pregnant female humpbacks; however, no relationship existed for pregnant whales. This difference may be indicative of the effects of pregnancy on δ15N, resulting from tissue synthesis and reduced excretion of nitrogenous waste, as well as on δ13C through increased mobilization of lipid stores to meet the energetic demands of pregnancy. Ultimately, our results support the use of blubber progesterone assays for diagnosing pregnancy in humpback whales and indicate that, when paired with other approaches (e.g. stable isotope analysis), pregnancy status can be an informative tool for addressing questions about animal physiology, ecology and population biology. This information will provide for more effective management and conservation efforts in a rapidly changing world.

Citation:

Clark C.T., A.H. Fleming, J. Calambokidis, N.M. Kellar, C.D. Allen, K.N. Catelani, M. Robbins, N.E. Beaulieu, D. Steel, and J.T. Harvey. 2016. Heavy with Child? Pregnancy Status and Stable Isotope Ratios as Determined from Biopsies of Humpback Whales. Conservation Physiology 4(1): cow050. doi: 10.1093/conphys/cow050.

Download PDF