Blue whales

Keywords >> Blue whales

Characterization of multivariate time series of behaviour data from animal-borne sensors is challenging. Biologists require methods to objectively quantify baseline behaviour, and then assess behaviour changes in response to environmental stimuli. Here, we apply hidden Markov models (HMMs) to characterize blue whale movement and diving behaviour, identifying latent states corresponding to three main underlying behaviour states: shallow feeding, travelling, and deep feeding.

Many species of baleen whales were hunted to near extinction in the Southern Hemisphere. The recovery of these populations will be affected by the availability of krill, a major dietary component, in the Southern Ocean. We combine a novel energetics model for baleen whales with a state dependent foraging model to explore the impacts of an expanding krill fishery on baleen whales. We parameterize the model for blue whales, but with simple modifications it could be applied to most baleen whales.

Collisions between ships and whales are reported throughout the world’s oceans. For some endangered whale populations, ship strikes are a major threat to survival and recovery. Factors known to affect the incidence and severity of collisions include spatial co-occurrence of ships and whales, hydrodynamic forces around ships, and ship speed. Less understood and likely key to understanding differences in interactions between whales and ships is whale behavior in the presence of ships.