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Modeling the Diving Behavior of Whales:
A Latent-Variable Approach with Feedback

and Semi-Markovian Components

Roland LANGROCK, Tiago A. MARQUES, Robin W. BAIRD, and
Len THOMAS

Recent years have seen a fast-growing body of literature concerned with the sta-
tistical modeling of animal movement in the two horizontal dimensions. On the other
hand, there is very little statistical work that deals with animal movement in the vertical
dimension. We present an approach that provides an important step in analyzing such
data. In particular, we introduce a hidden Markov-type modeling approach for time
series comprising the depths of a diving marine mammal, thus modeling movement
in the water column. We first develop a baseline Markov-switching model, which is
then extended to incorporate feedback and semi-Markovian components, motivated by
the observations made for a particular species, Blainville’s beaked whale (Mesoplodon
densirostris). The application of the proposed model to the beaked whale data reveals
both strengths and weaknesses of the suggested modeling framework. The framework
is general enough that we anticipate that it can be used for many other species given
minor changes in the model structure.

Key Words: Behavioral state; Distance sampling; Hidden Markov model; Maximum
likelihood; Movement model.

1. INTRODUCTION

Understanding and being able to quantitatively describe the way animals dive is im-
portant for various reasons. For example, characterizing via a statistical model the move-
ment process of diving animals in the absence of a disturbance such as anthropogenic
noise, and measuring the change in the model parameters in the presence of distur-
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bance, might be an effective way to quantify impacts (cf. Tyack et al. 2011). Further-
more, a good mathematical description of diving aids in the understanding of biologi-
cal processes such as gas exchange and physiology, and how these processes may be
affected by anthropogenic disturbance (cf. Hooker et al. 2009). Thirdly, diving and sur-
facing patterns can have direct influence on the performance of methods used to estimate
animal abundance, since they govern the availability for detection (Borchers et al. 2013;
Langrock et al. 2013). Finally, and more generally, the quantitative description of an ani-
mal’s movement may contribute to our understanding of the animal’s movement decisions
(e.g., Schick et al. 2008).

While there is a vast literature on modeling animal movement in the two horizontal di-
mensions, there is relatively little work that discusses statistical inference for movement in
the vertical dimension. For dive data in particular, an exception is a recent paper by Higgs
and Ver Hoef (2012), which deals with categorical and thus somewhat simplified data re-
lated to depths. McClintock et al. (2013) also incorporate categorical depth data in their
movement model. Bailleul et al. (2008) apply a first-passage time analysis in the depth
dimension to detect behavioral changes of southern elephant seals. Walker et al. (2011)
use splines to classify dive shapes, but do not attempt to model an entire movement path.
Dowd and Joy (2011) use an autoregressive process of order two to model vertical velocity
data collected on seals, but for example do not take into account the bounding nature of
the sea surface, such that simulations from their model would lead to unrealistic movement
patterns. The following comment, made by Houser (2006), is still accurate: “[. . .] whereas
movement and behavior models for terrestrial mammals enjoy a rich history of develop-
ment and application, similar models for marine mammals are all but nonexistent.” In this
paper, we propose and illustrate a flexible modeling framework for the analysis of such
data.

In particular, we suggest a hidden Markov-type modeling approach for time series com-
prising the depths of a diving whale, thus modeling movement in the water column. Hidden
Markov models (HMMs) are obvious candidates for modeling animal movement because
they allow movement patterns to be correlated over time, but in a way such that the pattern
occasionally changes according to switches in an underlying, non-observable behavioral
state process. In recent years, HMMs and related models have been used several times
to model movement of animals in the two horizontal dimensions, neglecting the vertical
dimension (see, e.g.: Holzmann et al. 2006; Patterson et al. 2009; Langrock et al. 2012).
Here, we focus specifically on movement of marine mammals in the vertical dimension.

While there does not seem to be a consistent use of terminology in the literature, the la-
bel “HMM” usually refers to processes that obey the assumption of the observations being
conditionally independent, given the states. Models that involve additional dependencies
between observations are often referred to as “Markov-switching models” (see Zucchini
and MacDonald 2009). We consider models that involve such dependencies, and will hence
mostly refer to them as Markov-switching models. However, the distinction is somewhat
artificial since the methods we consider, including the model fitting strategy, exploit (stan-
dard and nonstandard) HMM inference machinery. In addition to the extra dependencies
at the observation level, and motivated by movement data obtained for a beaked whale, we
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consider two other important extensions to the basic Markov-switching model: (1) incor-
porating feedback from the observed process on the subsequent generation of states, and
(2) allowing for some state dwell-time distributions (describing the time spent in a state
before changing to a different state) to be non-geometric.

Our motivating example concerns Blainville’s beaked whale (Mesoplodon densirostris),
a species that has been the focus of a considerable amount of recent research. This has been
in part motivated by several mass strandings associated with naval active sonar operations
(Cox et al. 2006; D’Amico et al. 2009), and the resulting conjecture, recently confirmed
(e.g., McCarthy et al. 2011; Tyack et al. 2011), that the species might be particularly sen-
sitive to such disturbance. The behavioral characteristics of these whales make them very
difficult to survey using visual methods, as they spend a rather small proportion of their
time near the surface. They make some of the most extreme dives recorded for cetaceans
(Baird et al. 2006; Tyack et al. 2006). The data set we use was collected using a time-depth
recorder, and represents the longest high resolution depth series recorded for this species,
ranging over 78 hours in duration.

The paper is structured as follows. Section 2 describes the motivating and method-
illustrating data set, which is the series of depths recorded for an individual Blainville’s
beaked whale. The general modeling framework that we suggest is introduced in Section 3.
Section 4 develops a model of the suggested type and applies it to the beaked whale data.
A discussion of the modeling approach, its potential applications and future work is given
in Section 5.

2. MOTIVATING BEAKED WHALE DATA

We consider the time series of depths observed for a single adult female Blainville’s
beaked whale, tagged off the west side of the island of Hawaii. A suction-cup attached
tag, containing an Mk9 time-depth recorder (Wildlife Computers, Washington, USA), was
attached to the whale. The tag detached after 78.73 hours (an unusually long period of
time for this type of attachment), floated to the surface and was located and recovered
using the signals from a built-in VHF transmitter. Depth was measured every second, but
this resolution seems overly fine with respect to the modeling of behavioral states. Thus,
we coarsened the resolution by a factor of 10 to decrease the computational effort, while
still maintaining a fairly high resolution in order to get a detailed picture of the whale’s
movement pattern. The resulting 28343 depth observations are illustrated in Figure 1. More
detailed information on the data and on the behavior and physiology of the studied species
is given in Baird et al. (2008).

Blainville’s beaked whales present two types of dives, shallow dives and deep dives,
which have very distinct characteristics, given their also very distinct purposes. Deep dives
have been associated with foraging, and have been recorded to be 835 meters deep and 47
minutes long, on average (Tyack et al. 2006), which puts these animals amongst those who
dive deepest and longest among the air breathing creatures. On the other hand, shallow
dives are believed to have no foraging purposes, with no echolocation-mediated foraging
recorded during those (Tyack et al. 2006), and mean depths around 70 meters deep and 9
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Figure 1. Beaked whale depth profile. The shaded periods correspond to “night” periods, between 17:44 h
(sunset) and 06:37 h (sunrise).

minutes long. Tyack et al. (2006) have associated these with a period of recovery from the
build-up of metabolites of anaerobic metabolism.

3. A LATENT-VARIABLE MODELING FRAMEWORK FOR DIVE
DATA

3.1. BASELINE MARKOV-SWITCHING MODEL

We initially develop a baseline model for time series of depths related to a diving ma-
rine mammal. Clearly, the movement pattern of a marine mammal changes according to
changes of its behavioral state. For example, on the descent to its foraging grounds an ani-
mal will move differently than when it actually is foraging. This motivates the use of mix-
ture models, and in particular of dependent mixtures such as Markov-switching models. In
a basic N -state Markov-switching model, the underlying state process, denoted by St , is
Markovian, such that at any time t + 1 the state the animal is in depends only on what state
the animal was in at time t . We denote the state transition probabilities at time t by ω

(t)
ij ,

i, j = 1, . . . ,N , with ω
(t)
ij = Pr(St+1 = j |St = i), and summarize them in the transition

probability matrix (t.p.m.) �(t), with ω
(t)
ij the entry in row i and column j . The Markov

chain St represents the non-observable (behavioral) state process which determines the
distribution at the observation level, i.e., that of the depths.

Since depths are continuous-valued and non-negative, we consider gamma distributions
for the state-dependent process, which we denote by Zt . Clearly, the distribution of the
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depth observed at time t depends on both the depth at time t − 1 and on the state the
animal is in. For example, at time t the expected depth of an animal on the ascent from a
dive is expected to be slightly smaller than its depth at time t − 1. Thus, we reparameterize
the gamma distribution in terms of a mean and a standard deviation parameter, μ and σ ,
respectively (such that shape = μ2/σ 2 and scale = σ 2/μ), and assume that

Zt | St = i,Zt−1 = zt−1 ∼ Gamma
(
μ = max(zt−1 + θi,1), σ = νi

)
. (1)

Here θi and νi depend on the state the animal is in, with θi giving the expected change in
depth when in state i, and νi describing the uncertainty in the corresponding change. The
max operator constrains the mean of the depth distribution to be greater than or equal to
one, which is done in order to avoid ending up with an impossible negative mean (if the
drift θi is negative and exceeds zt−1 in absolute value). In the application to the beaked
whale depth time series, we will consider models with N = 7 states, corresponding to
“surfacing” periods and “descent”, “bottom” and “ascent” phases for shallow and for deep
dives, respectively. In the following we let fi(zt |zt−1) denote the conditional probability
density function of the gamma distribution for depth at time t , given the previous depth
zt−1 and with parameters θi and νi , as defined in (1). An alternative way to model a series
of depths would be to model depth displacements, rather than actual depths. However,
such an approach would require the state-dependent distributions to be truncated flexibly
according to the current distance to the surface.

Conditional on an initial depth, Z0 = z0, the likelihood of this model is given by

L = f (z1, . . . , zT |z0)

=
N∑

i1=1

· · ·
N∑

iT =1

f (z1, . . . , zT |S1 = i1, . . . , ST = iT , z0)f (S1 = i1, . . . , ST = iT )

=
N∑

i1=1

· · ·
N∑

iT =1

T∏

t=1

fit (zt |zt−1)Pr(S1 = i1)

T −1∏

t=1

ω(t)
sit ,sit+1

,

where z0, z1, . . . , zT denote the observed depths. While the observations often directly
reveal the underlying behavioral state, the states are in general not directly observed, such
that within the likelihood we need to sum over all possible state sequences that may have
given rise to the observed depths. This brute force evaluation of the likelihood involves
NT function evaluations, which clearly makes a numerical maximization impossible even
for moderate values of N and T . However, there is an alternative, much more efficient
way to evaluate the likelihood, given by a recursive scheme called the forward algorithm.
Applying the forward algorithm, the likelihood can be expressed as

L = δP(z1|z0)�
(1)P(z2|z1)�

(2) · . . . · �(T −2)P(zT −1|zT −2)�
(T −1)P(zT |zT −1)1t , (2)

where P(zt |zt−1) = diag(f1(zt |zt−1), . . . , fN(zt |zt−1)), 1 ∈ R
N is a row vector of ones

and δ denotes the initial distribution of the Markov chain, i.e., δi = Pr(S1 = i). Regarding
the choice of δ, one may simply model a dive profile that starts with a movement pattern
that can clearly be assigned to one of the states, such that δ is effectively known and can



R. LANGROCK ET AL.

thus be fixed correspondingly. Alternatively, one can either estimate δ or use the stationary
distribution of the Markov chain St , if it exists. The representation (2) is that characteristic
of HMMs, with the computational cost now linear in the number of observations, T . The
model parameters can be estimated by direct numerical likelihood maximization, subject
to well-known technical issues (see Zucchini and MacDonald 2009, for a detailed account
of these and also for details on how to compute the likelihood of an HMM).

While within the likelihood evaluation the hidden states are essentially treated as nui-
sance variables, it is often of interest to also estimate the most likely states, given some
parameter estimates (both for diagnostic purposes and also as the states are sometimes of
interest in their own right). To do this, an efficient dynamic programming algorithm called
the Viterbi algorithm can be applied, yielding the sequence of states s∗

1 , . . . , s∗
T that is most

likely to have given rise to the observed sequence of depths, under the fitted model:

(
s∗

1 , . . . , s∗
T

) = argmax
(s1,...,sT )∈{1,...,N}T

Pr(S1 = s1, . . . , ST = sT |Z0 = z0, . . . ,ZT = zt );

for details see Chapter 5 in Zucchini and MacDonald (2009).

3.2. INCORPORATING FEEDBACK

Whether or not a whale switches, say, away from a descent phase, does not depend
only on what state the whale is currently in. Instead, a whale will typically switch away
from a descent phase when it arrives at its foraging grounds (i.e., at some relevant depths).
Likewise, an animal will switch away from an ascent phase when it reaches the vicinity
of the surface. Thus, the sequence of behavioral states will usually not be well-described
by a simple Markov chain; dependence on the actual depths is key and should be taken
into account. This can be accomplished by considering feedback models in the spirit of
Zucchini et al. (2008) and Langrock (2012). In the given context, we suggest modeling
some of the state transition probabilities as functions of the current depth, zt . For example,
we can use a polynomial logistic regression of order d to link ω

(t)
ij to zt :

ω
(t)
ij (zt ) = Pr(St+1 = j |St = i,Zt = zt ) = logit−1

(
d∑

k=0

λkz
k
t

)

. (3)

For example, we expect the probability of leaving the descent phase in a deep dive cycle
to be very close to zero for small values of zt , and to increase considerably when the ani-
mal approaches the depths that are relevant for foraging (>700 meters, roughly, in case of
the example beaked whale). For such a model, the likelihood structure (2) remains valid,
with �(t) replaced by �(t)(zt ), for t = 1, . . . , T − 1, where the t.p.m. �(t)(zt ) contains
the transition probabilities at time t , some of which are depth-dependent. While the like-
lihood structure is still that characteristic of HMMs, such feedback models are neither
Markov-switching nor hidden Markov models in the strict sense, since the state process is
not Markovian. Thus, we refer to such a model as a latent-variable model with feedback,
closely following Zucchini et al. (2008) who used the term “latent-state model” to refer to
such feedback models.
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3.3. SEMI-MARKOVIAN COMPONENTS

Another issue with the baseline model is that in a basic Markov-switching model the

state dwell times (i.e., the durations of stays in the different states) are necessarily geomet-

rically distributed. This can be unrealistic, for example for the bottom phase of deep dives:

having spent a lot of physiological capital going down hundreds of meters to the depths at

which the prey exists, it would make no sense for an animal to almost immediately begin its

ascent. Other marine mammals, such as, e.g., sperm whales and short-finned pilot whales,

spend long periods resting at the surface, such that the dwell time of the surface state may

not be well-described by a geometric distribution.

So-called hidden semi-Markov models (HSMMs) relax the corresponding condition: the

dwell time in an HSMM state is explicitly modeled by some distribution on the positive in-

tegers (Guédon 2003). Langrock and Zucchini (2011) demonstrate that specially structured

HMMs can capture the ‘semi’-property of HSMMs, i.e., that HMMs can accommodate—at

least approximately—any desired state dwell-time distribution. This means that HSMMs

can conveniently be fitted using the HMM inference machinery. The idea is to expand any

semi-Markovian state into a large set of Markovian states sharing the same state-dependent

distribution, structuring the transition probabilities between those states such that the de-

sired dwell-time distribution is accurately approximated. This approach allows to consider

arbitrary dwell-time distributions while preserving the Markov property of the latent pro-

cess. Thus, we maintain the likelihood. Therefore, this extension leads to an increased

computational effort (see remarks in Section 5).

3.4. REMARKS ON FINE-TUNING OF THE MODEL

Putting all these components together, we obtain a natural and flexible modeling frame-

work, in which we allow for movement patterns to vary across different behavioral states

and where we accommodate autocorrelation of the observations. In general, the exact way

the feedback and semi-Markovian extensions need to be set up in order to make a suitable

model, and also the exact configuration of the state structure, highly depend on both the

specific movement patterns exhibited by the species that is considered and on the purpose

of the analysis (e.g., obtaining a realistic pattern of times at the surface for use in estimating

the “availability bias” in visual abundance estimation methods). In Section 4, we discuss

the particular case represented by the beaked whale data described in Section 2. While the

details of the model structure are thus developed specifically for this species and the given

series, we believe that the suggested type of approach, using the baseline model discussed

in Section 3.1 and potentially incorporating the extensions outlined in Sections 3.2 and

3.3, can be applied to many other marine mammal species, typically after some straight-

forward modifications of details of the model structure. Because of the simple structure of

the HMM likelihood, it is relatively easy to fit a suite of different models thought to be

biologically plausible, and use standard model selection, goodness-of-fit, and diagnostic

tools to select among them.
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4. CASE STUDY: BEAKED WHALE DATA

4.1. MODEL DEVELOPMENT AND INFERENCE

For the beaked whale series described in Section 2, with depth observations every 10 s,
it seems plausible to distinguish three primary behavioral states: “surfacing” (state 1 in
the following), “deep-diving” and “shallow-diving”. Since the movement pattern within
each of the latter two states clearly is not homogeneous over time, we further subdivide
the state associated with deep dives into states 2 (“descent”), 3 (subsequently referred to
as “foraging”, although this nominal state does not necessarily imply that the animal is
actually feeding) and 4 (“ascent”), and analogously the state associated with shallow dives
into states 5, 6, and 7 (with state 6 referred to as the “bottom” of a shallow dive). Thus, we
consider a model with seven states, with some natural constraints on the state transitions. In
particular, we assume that a stay in state 1 is always followed by the animal passing either
through the states 2, 3, 4, and 1 (in that order, thus performing a deep dive), or through the
states 5, 6, 7, and 1 (in that order, thus performing a shallow dive). Some transitions are
thus impossible, and hence there are considerably fewer parameters to be estimated than
usually would be the case for a seven-state Markov-switching model.

To account for the fact that the state switching dynamics to some extent depend on
the actual depths, we incorporate several feedback mechanisms in the model. We used the
Akaike Information Criterion to choose the orders of the feedback mechanisms—d in (3)—
trying a maximum order of two in each case. We model the transitions to the bottom parts
of the dives, i.e., the conditional probability of the animal switching to state 3 (“foraging”)
at time t + 1, given it is in state 2 (“deep dive descent”) at time t , and the conditional
probability of the animal switching to state 6 (“bottom of a shallow dive”) at time t + 1,
given it is in state 5 (“shallow dive descent”) at time t , as functions of depth at time t , zt :

ω
(t)
23 (zt ) = Pr(St+1 = 3|St = 2,Zt = zt )

=
⎧
⎨

⎩

logit−1(α0 + α1zt + α2z
2
t ) if α2 ≥ 0 or zt < − α1

2α2
;

logit−1(α0 − α2
1

4α2
) otherwise;

(4)

ω
(t)
56 (zt ) = Pr(St+1 = 6|St = 5,Zt = zt ) = logit−1(β0 + β1zt + β2z

2
t

)
,

with coefficients α0, α1, α2, β0, β1 ∈ R. Transition probabilities involving a quadratic pre-
dictor tend to zero as the covariate value increases if the coefficient associated with the
quadratic term is negative. In such a case an animal may in simulations be “trapped” in the
corresponding state: e.g., on a descent in a deep dive cycle an animal may pass the relevant
layers of the water column without leaving the state, such that at some point the probability
of leaving the state becomes approximately zero. To avoid this undesirable feature, we used
the slight modification given in (4), specifying the quadratic predictor in ω

(t)
23 (zt ) to be con-

stant for values higher than the value at which the maximum is attained, which results in an
alternative smooth continuation of the predictor function. The logistic regression used to
model ω

(t)
56 (zt ) is, in principle, susceptible to the same problem, but in our application the

coefficient β2 was estimated to be positive, such that no differentiation between two cases,
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as for ω
(t)
23 (zt ), was necessary. Future work could explore alternative functional forms for

these predictors. For example, one could consider mixtures of nondecreasing functions to

obtain flexible forms that are less susceptible to the problems with quadratic terms. In par-

ticular, one could consider linear combinations of I-splines (Ramsay 1988). However, it

can be too restrictive to consider nondecreasing functions only (cf. our results for ω
(t)
56 (zt )

given below).

For the conditional probabilities of switching to state 1 (“surfacing”) at time t +1, given

state 4 (“deep dive ascent”) or given state 7 (“shallow dive ascent”), respectively, at time t ,

we assume

ω
(t)
41 (zt ) = ω

(t)
71 (zt ) = logit−1(γ0 + γ1zt ),

with γ0, γ1 ∈ R. We assume common parameters for the transitions from state 4 (“deep

dive ascent”) to state 1 (“surfacing”) and from state 7 (“shallow dive ascent”) to state 1,

respectively, since clearly the whale switches from an “ascent” mode to the “surfacing”

mode when it reaches the vicinity of the surface, and it is not expected that there is a

relevant difference in this mechanism between shallow dive and deep dive cycles (although

the different velocities in the states could in principle make a minor difference). Finally,

after a deep dive, the considered beaked whale seems to remain relatively near the surface

for some time, which we want to explicitly incorporate in the model. Thus, we extend

the feedback mechanisms suggested in Section 3.2 by considering—in addition to the state

process, St , and the state-dependent depth process, Zt —a third process, Rt , giving the time

since the whale was last more than 500 meters deep. In the following we refer to Rt as the

“time since the last deep dive”. The probability of beginning a deep dive given a surfacing

period finishes, denoted by πt (rt ), is then modeled as a function of the time that has passed

since the last deep dive:

πt (rt ) = Pr(St+1 = 2|St = 1, St+1 �= 1,Rt = rt ) = logit−1(ζ0 + ζ1rt ),

with ζ0, ζ1 ∈ R. In this model, if the whale switches away from state 1 in the time interval

(t, t + 1], then it will start a deep dive with probability πt (rt ) and a shallow dive with

probability 1 − πt (rt ).

Figure 2 illustrates the dependence structure of a Markov-switching model that involves

feedback of the suggested type (but no semi-Markovian states). The feedback mechanisms

are represented by the arrows from the processes Rt and Zt to the state process St . State

transition probabilities not affected by feedback (in one of the ways described above) are

assumed to be homogeneous over time, such that in the following we omit the superscript in

ω
(t)
ij for corresponding i, j . Due to the assumptions made concerning the dive cycle, most

of the state transition probabilities necessarily equal zero. We summarize the transition
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Figure 2. Dependence structure of a feedback Markov-switching model for the time series of depths.

probabilities at time t in the t.p.m. �(t)(zt , rt ), with

�(t)(zt , rt )

=

⎛

⎜
⎜⎜⎜
⎜⎜⎜
⎜⎜
⎝

ω11 (1 − ω11)πt (rt ) 0 0 (1 − ω11)(1 − πt (rt )) 0 0

0 1 − ω
(t)
23 (zt ) ω

(t)
23 (zt ) 0 0 0 0

0 0 ω33 1 − ω33 0 0 0

ω
(t)
41 (zt ) 0 0 1 − ω

(t)
41 (zt ) 0 0 0

0 0 0 0 1 − ω
(t)
56 (zt ) ω

(t)
56 (zt ) 0

0 0 0 0 0 ω66 1 − ω66

ω
(t)
71 (zt ) 0 0 0 0 0 1 − ω

(t)
71 (zt )

⎞

⎟
⎟⎟⎟
⎟⎟⎟
⎟⎟
⎠

.

Conditional on an initial depth, Z0 = z0, and on an initial time since the last deep dive,
R0 = r0, the likelihood of the considered feedback Markov-switching model still has the
typical HMM matrix product structure given in (2), only �(t), t = 1, . . . ,28341, needs to
be replaced by �(t)(zt , rt ) due to the inclusion of the feedback components.

Finally, for the considered beaked whale dive series, the assumption of a geometric state
dwell-time distribution seems unrealistic for the “foraging” mode (state 3); see remarks
above. We thus use the approach described in Section 3.3 to extend the seven-state feedback
model by assuming a negative binomial state dwell-time distribution in state 3, with mean
parameter η and size parameter q . The associated probability mass function, expressed in
terms of q and φ = η/(η + q), is given by

p(k) = �(k + q − 1)

(k − 1)!�(q)
φq(1 − φ)k−1, k = 1,2,3, . . . .

The geometric distribution is a special case (q = 1). Considering a more flexible class
of dwell-time distributions for state 3 is particularly important if one is interested in the
foraging behavior, since it is this deep-diving bottom phase that has been associated with
active search for an acquisition of prey (Tyack et al. 2006). For example, one component
of an energetics model may be the distribution of time in this state; alternatively a prey
characterization study may require a distribution of depths at which active foraging takes
place.

By implementing the approach outlined in Section 3.3, we maintain the likelihood struc-
ture given in (2), but due to state 3 being expanded into a set of m states, the dimensions
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of both �(t)(zt , rt ) and P(zt |zt−1) become (m + 6) × (m + 6) (cf. Langrock et al. 2012).
The value chosen for m needs to be sufficiently large to ensure a close approximation to
the HSMM—ideally such that the interval [1,m] contains almost all the mass of the state
dwell-time distribution, and at least such that the p.m.f. of the state dwell-time distribu-
tion monotonically decreases for values larger than m (cf. Langrock et al. 2012). We used
m = 250 in the given application, which turns out to be a conservative choice, as the inter-
val [1,250] contains ≈99.8 % of the mass of the fitted state dwell-time distribution.

The described seven-state model, including feedback components and one semi-
Markovian component, was fitted to the series of depths described in Section 2 via numer-
ical maximum likelihood estimation using the optimizer nlm in R (R Core Team 2012).
Confidence intervals were obtained based on the Hessian of the log-likelihood. We repa-
rameterized all constrained parameters in terms of unconstrained parameters. In particular,
we used log transformations to enforce θ2 and θ5 to be positive and θ4 and θ7 to be negative,
such that the mean depth displacement was restricted to be positive in the descent phases
and to be negative in the ascent phases. The likelihood was maximized with respect to the
unconstrained parameters. For transformed parameters we obtained approximate standard
errors (and hence confidence intervals) for the parameters of interest, i.e., the constrained
parameters, using the delta method. The example time series was assumed to start with the
animal being in state 2 (“deep dive descent”), so we fixed the initial distribution δ accord-
ingly. This also means that the initial value used for the time since the last deep dive, r0, has
no effect on the likelihood (because it only influences transitions away from the surfacing
state, and such transitions do not occur before the animal has finished the first deep dive,
at which point the time since the last deep dive is known). The R code used to estimate the
model parameters is provided in the online supplementary material to this manuscript.

4.2. RESULTS

The parameter estimates and associated 95 % confidence intervals, given in Table 1,
reveal some intriguing features of the analyzed time series. First, the deviation of the fitted
dwell-time distribution in state 3 (“foraging”) from a geometric is striking, with the mode
of the fitted distribution being at 131, and the 95 % confidence interval for the size param-
eter not containing the value one (which corresponds to the special case of a geometric
distribution, and note that the value one is actually far outside the 95 % confidence inter-
val, which has the lower boundary 10.19). This gives evidence for the inappropriateness of
geometric dwell-time distributions, and hence simple Markov-switching or hidden Markov
models, in this case. Second, the estimated state-dependent mean displacements indicate
that both the descent and the ascent phase in deep dive cycles involve a vertical speed that
is considerably higher, on average, than that in the corresponding phases in a shallow dive
cycle. The estimated depth displacement parameters in states 2, 4, 5, and 7 correspond to
vertical speeds of 1.5, 0.8, 0.4 and 0.4 meters per second, respectively, figures that match
the findings of Tyack et al. (2006) remarkably well: after manually classifying observations
into states, those authors obtain corresponding values of 1.6, 0.7, 0.3 and 0.3.

Figure 3 illustrates the various feedback mechanisms for the fitted model. The corre-
sponding limits of the pointwise 95 % confidence intervals occasionally lie outside the
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Table 1. Parameter estimates for the model with feedback and a semi-Markovian component, fitted to the beaked
whale data, and 95 % confidence intervals of the estimates.

Related to State process State-dep. process

state Parameter Estimate 95 % CI Parameter Estimate 95 % CI

1 ω11 0.93 [0.92,0.94] θ1 −4.84 [−5.10,−4.58]
(“surfacing”) ζ0 −3.83 [−4.79,−2.87] ν1 0.49 [0.48,0.50]

ζ1 · 103 3.28 [1.82,4.74]
2 α0 −23.71 [−36.31,−11.11] θ2 14.87 [14.61,15.13]

(“deep dive α1 · 103 46.97 [16.24,77.70] ν2 5.24 [5.04,5.45]
descent”) α2 · 103 −0.03 [−0.04,−0.01]

3 q 27.22 [10.19,44.26] θ3 0.10 [−0.18,0.38]
(“foraging”) η 135.43 [125.43,145.44] ν3 8.76 [8.56,8.95]

4,7 γ0 4.59 [3.52,5.66] θ4 −7.72 [−7.86,−7.57]
(“deep/shallow γ1 −0.75 [−0.91,−0.58] ν4 4.24 [4.13,4.35]
dive ascent”) θ7 −3.73 [−3.91,−3.55]

ν7 3.73 [3.61,3.86]
5 β0 −1.48 [−1.71,−1.26] θ5 4.04 [3.85,4.24]

(“shallow dive β1 · 103 −22.26 [−28.09,−16.44] ν5 3.52 [3.42,3.63]
descent”) β2 · 103 0.07 [0.04,0.09]

6 ω66 0.97 [0.96,0.97] θ6 −0.13 [−0.16,−0.11]
(“bottom of a ν6 1.04 [1.02,1.06]
shallow dive”)

Figure 3. Top left: estimated probability of switching to “foraging”, given “deep dive descent”. Top right: es-
timated probability of switching to “shallow dive bottom”, given “shallow dive descent”. Bottom left: estimated
probability of switching to “surfacing”, given “deep dive ascent” (or “shallow dive ascent”). Bottom right: esti-
mated conditional probability of beginning a deep dive cycle, given the animal switches away from “surfacing”.
Each of these probabilities is a function either of depth, zt , or of the time since the last deep dive, rt . The solid
lines correspond to the maximum likelihood estimates, and the dashed lines indicate the 95 % pointwise confi-
dence intervals.
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Figure 4. Sequence of states that under the fitted model is most likely to have given rise to the depths observed
in the first four hours after deployment of the tag (found using the Viterbi algorithm).

corresponding parameter space, which is due to the application of the delta method, with
the asymptotic distribution of the quantity of interest being approximated by a normal
distribution. An alternative would be to derive the confidence intervals based on a large
Monte Carlo sample from the Hessian-based approximate multivariate normal distribu-
tion of the (constrained) estimators. Notably, the probability of switching from state 5 to
state 6, ω56(zt ), is slightly higher for small depths (zt < 50) than for moderate depths
(100 < zt < 200). This corresponds well to the observed diving pattern, where most of the
shallow dives are to depths less than ∼50 meters, but those that do go further down than
this are to depths up to ∼350 meters.

For the fitted model, we applied the Viterbi algorithm to find the sequence of states
that is most likely to have given rise to the observed sequence of depths. Some example
results of applying Viterbi are illustrated in Figure 4, which shows the decoded states only
for the first four hours of observation in order to facilitate the visualization. Based on
visual inspection, the assignments of the observations to the seven states of the model
seem plausible. However, the second deep dive depicted in Figure 4 shows that with the
given model specification, where states 2, 3, and 4 are visited in this order only, there might
still be notable descents and ascents that are allocated to state 3 (“foraging”).

Simulating from the fitted model provides a means of (informal) model checking, since
it allows us to visually check whether or not the model captures the main features of the
whale’s diving pattern. Figure 5 displays a sequence of depths that has been simulated
from the fitted model. In addition, Figure 6 gives the empirical and the model-derived
depth distributions, with the latter obtained through Monte Carlo simulation (using 100
simulated series, each of the same length as the observed series).

The fitted model captures the movement pattern fairly well, but also shows some mis-
matches, which depending on the question of interest may or may not be irrelevant. For
example, the observed dives are “more regular” than implied by the fitted model, with the
beaked whale often apparently repeatedly diving to the same depth. Furthermore, the us-
age of the water column shows some mismatch at depths around 800 meters, and at depths
between 50 and 200 meters. Finally, at the given time scale with observations every 10



R. LANGROCK ET AL.

Figure 5. Depth profile simulated from the fitted model.

Figure 6. Empirical and model-derived depth distribution (i.e., usage of the water column).

seconds, the model does not fully capture the fine-scale correlation of movement. This is
manifested in the estimated standard deviations of the state-dependent gamma distribu-
tions (see Table 1). For example, according to the fitted model, an animal that is in state
3 and makes a depth displacement of, say, 10 meters in the current 10-second interval,
could well make a depth displacement of, say, −10 meters in the subsequent 10-second
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interval, which is physically unrealistic. This problem arises because we essentially as-
sume a biased random walk within each state, with directional bias determined by the drift
parameter. While this approach does imply that successive vertical movement directions
are correlated, the correlation is modeled only indirectly via the state process. Biased and
correlated random walks seem more realistic in this context, as they involve a trade-off
between directional bias and directional persistence (i.e., the tendency to maintain the pre-
vious movement direction), and thus comprise a component that explicitly addresses the
fine-scale correlation. We tried to fit corresponding models to the beaked whale data, but
encountered immense difficulties during optimization with local likelihood maxima, which
we were not able to resolve in a satisfactory manner. This seems to be an identifiability is-
sue, likely stemming from the fact that the distinction between correlated random walks
and biased and correlated random walks is notoriously difficult (see, e.g., Codling, Plank,
and Benhamou 2008). In any case, the extent of this issue is related to the time scale con-
sidered: the finer the resolution of the observations is in time, the higher the correlation
of successive displacements will be. From a modeling perspective, we expect that it will
often be easier to model data with a relatively coarse resolution in time, because it seems
difficult to adequately model the fine-scale correlation. However, the resolution should be
chosen such that it does not hinder addressing the (biological) question of interest.

5. DISCUSSION

The approach presented here allowed us to model the movement of a beaked whale for
a period of over 3 days. We were able to recover patterns of vertical speeds obtained by
others (Tyack et al. 2006) who used a manual state assignment process. In particular, the
Viterbi-based assignment of (behavioral) states to the observations was plausible, such that
we believe our approach to be a useful tool for automated allocation of segments of dive
time series to behavioral states. The fitted model also enabled us to simulate realistic dive
paths (at least if regarded at a more coarse time scale than the one considered), which can
be useful in scenario planning, for example as part of mitigation strategies (see, e.g., van
der Hoop, Vanderlaan, and Taggart 2012).

We note that the modeling should always be implemented keeping in mind the specific
objectives being considered, as well as the spatial and temporal scale at which inferences
are to be made. As an example, if the aim is to estimate availability bias in population
assessment surveys, the model complexity might be reduced to focus on the states which
have a direct impact on when the animal is available to be detected. In the case of visual
surveys (e.g., visual line transects), state 1 (“surfacing”) would be the most important to
be described accurately. On the other hand, if passive acoustic methods were used, all but
the persistence in state 3 (“foraging”) might be irrelevant. For a given biological problem,
it may also be useful to replace the visual assessment of fit that we applied here by more
quantitative criteria, tailored to the problem at hand.

As with many other movement modeling techniques, care needs to be taken when choos-
ing the temporal scale of analysis (Yackulic et al. 2011; Harris and Blackwell 2013). Any
interpretation of a discrete-time model of the suggested type must be made relative to the
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considered resolution in time, as the model only allows behavioral switches to occur at the
time scale the model operates on. For a temporal resolution as fine as in our application,
with only 10 s between successive observations, this issue is unlikely to be problematic in
terms of the interpretations being made. We tested our approach also on a slightly coarser
temporal scale, using the beaked whale data set but considering depth observations only
every 30 s (results not shown). In this additional modeling exercise our approach identified
the same movement pattern, but with parameter estimates rescaled as expected due to the
different resolution in time: e.g., the expected length of a stay in the semi-Markovian state 3
(“foraging”) changed from 135 time units (∼=1350 s) to 43 time units (∼=1290 s). However,
many of the existing data sets on animal movement involve a very much coarser temporal
scale, e.g., with observations made every two hours. Such coarse resolutions substantially
limit the chances of drawing meaningful conclusions on the behavioral state process, and
require different modeling strategies than those discussed here.

Modeling at a very fine temporal scale clearly carries a computational cost. However,
applying the forward algorithm to evaluate the likelihood renders the computational effort
linear in the number of observations and makes numerical likelihood maximization feasible
even for very high numbers of observations. In the application to the beaked whale depth
series, with observations every 10 s, leading to a total of 28,342 observations, we were
still able to fit highly complex latent-variable models within a reasonable time. Fitting the
model described in Section 4 but without the semi-Markovian component took about 3
hours on an i7 CPU, at 2.7 GHz and with 4 GB RAM, and fitting the same model including
the semi-Markovian component took about 21 hours. In the latter case the computing time
could be reduced to about 7 hours by using the parameter estimates obtained for the simpler
Markovian model as initial values in the numerical maximization.

While being illustrated on a single animal’s dive profile, the procedure also represents
a flexible approach for modeling depth profiles of other diving species. As a possible ap-
proach to model development, one could start by specifying how many states seem to be
required to describe a given species’ movement. Then, given biological constraints, transi-
tion probabilities between some of these might be set to zero, and others would be modeled
incorporating feedback mechanisms. For states in which a non-geometric dwell time is
suspected, a semi-Markovian component could be added. Our approach might also be used
under a different context to model other movement/displacement processes, namely those
with a clear boundary. For example, the sea surface for a deep-diving species represents a
similar barrier to movement as the earth’s surface for a bird of prey. The methods described
comprise a set of building blocks providing a versatile modeling approach. In order to (at
least partly) investigate the general applicability of the approach, we applied this modeling
strategy to a second time series, corresponding to the movement of a second Blainville’s
beaked whale (results not shown). The model fitted to this second data set revealed features
very similar to those discussed in Section 4.2. According to the fitted models, the major
differences between the two data sets were that the second whale performed less extreme
deep dives, in terms of the maximum depths reached, and that after a deep dive the animal
on average needed much less time to rest at the surface before starting the next deep dive.

There are a number of possible extensions of the considered approach. First, there
are different ways of extending the framework in order to simultaneously model multi-
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ple movement paths, accounting for possible heterogeneity. One can, e.g., consider hier-

archical formulations of the models, which usually are relatively straightforward to im-

plement yet accompanied by large scale increases in computational time (Altman 2007;

Schliehe-Diecks, Kappeler, and Langrock 2012). A computationally less demanding way

of accounting for heterogeneity across individuals is to incorporate individual-specific co-

variates in the model (if available). Second, the considered class of models can be ex-

tended in order to allow for modeling of movement in three-dimensional space. The easi-

est and perhaps most feasible strategy for accomplishing this task is to assume contem-

poraneous conditional independence between vertical and horizontal movement, given

the behavioral state, thus modeling the horizontal and vertical movement separately in

the observation process (cf. Chapter 8 in Zucchini and MacDonald 2009, for a discus-

sion of contemporaneous conditional independence). An alternative is to consider dis-

placement vectors, rather than actual positions, then modeling step lengths using some

distribution on the non-negative real numbers, and directions using a suitable three-

dimensional directional distribution. This would be a natural extension of the existing

work on hidden Markov-type modeling of horizontal movement (e.g., Morales et al. 2004;

Langrock 2012, but is technically more challenging, particularly due to the bounding nature

of the sea surface. Third, the suggested approach could be extended in a relatively straight-

forward way to include time-varying parameters, allowing for diel variation or response

to changing environmental conditions. Fourth, the ocean floor also is a natural barrier to

vertical movement and, while here we did not take this into account explicitly, this could

for example be accomplished by modeling the probability of transitioning from the “deep

dive descent” state to the “foraging” state as a function of the distance to the ocean floor,

if that information is available.

Finally, it would be worthwhile to explore the practicality of a Bayesian inference ap-

proach. In particular, it may be useful to include prior information on the parameters, which

could aid in overcoming numerical problems (e.g., those we encountered when trying to

incorporate biased and correlated random walks; see remarks at the end of Section 4.2).

A Bayesian approach would also provide a more efficient and natural way for dealing with

uncertainty in the parameter estimates, avoiding the problems we encountered with regard

to confidence intervals where the boundaries occasionally lie outside the possible range of

values (a consequence of the application of the delta method). Posterior predictive checks

would also enable the uncertainty to be acknowledged within model checking, whereas we

based our assessments essentially only on the point estimates. Lastly, a Bayesian approach

would readily extend to hierarchical modeling of data from multiple individuals. On the

other hand, a Bayesian analysis can prove prohibitively computer intensive, at least for the

very large samples of data often associated with dive record data.

In conclusion, the methods presented and implemented here represent an important step

in creating biologically realistic models for the vertical component of animal movement.

We anticipate that these methods, together with extensions like those outlined above, will

have broad utility and stimulate further research in this area.
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