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1.  INTRODUCTION

Cryptococcosis is a fungal disease caused by path-
ogenic organisms in the genus Cryptococcus that are
divided into 2 main species complexes: C. neofor-

mans and C. gattii (formerly called C. neoformans
gattii or var. gattii). The monogeneric complex C.
neoformans was identified to species as C. neofor-
mans and C. gattii in 2002 (Kwon-Chung et al. 2002,
2017, D’Souza et al. 2011). Unlike C. neoformans,

© The authors 2021. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited.

Publisher: Inter-Research · www.int-res.com

*Corresponding author: sjteman@ucdavis.edu

Epizootiology of a Cryptococcus gattii outbreak in
porpoises and dolphins from the Salish Sea

Sarah J. Teman1,*, Joseph K. Gaydos1, Stephanie A. Norman2, Jessica L. Huggins3, 
Dyanna M. Lambourn4, John Calambokidis3, John K. B. Ford5, M. Bradley Hanson6,

Martin Haulena7, Erin Zabek8, Paul Cottrell9, Linda Hoang10,11, 
Muhammad Morshed10,11, Michael M. Garner12, Stephen Raverty8

1The SeaDoc Society, Karen C. Drayer Wildlife Health Center − Orcas Island Office, 
UC Davis School of Veterinary Medicine, Eastsound, WA 98245, USA

2Marine-Med: Marine Research, Epidemiology, and Veterinary Medicine, Bothell, WA 98021, USA
3Cascadia Research Collective, Olympia, WA 98501, USA

4Marine Mammal Investigations, Washington Department of Fish and Wildlife, Lakewood, WA 98498, USA
5Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada

6Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 
Seattle, WA 98112, USA

7Vancouver Aquarium, Vancouver, BC V6G 3E2, Canada
8Animal Health Centre, British Columbia Ministry of Agriculture, Foods and Fisheries, Abbotsford, BC V3G 2M3, Canada

9Fisheries and Oceans Canada, Vancouver, BC V6C 3S4, Canada
10BC Centre for Disease Control Public Health Laboratory, Vancouver, BC V5Z 4R4, Canada

11Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
12Northwest ZooPath, Monroe, WA 98272, USA

ABSTRACT: Cryptococcus gattii is a fungal pathogen that primarily affects the respiratory and
nervous systems of humans and other animals. C. gattii emerged in temperate North America in
1999 as a multispecies outbreak of cryptococcosis in British Columbia (Canada) and Washington
State and Oregon (USA), affecting humans, domestic animals, and wildlife. Here we describe
the C. gattii epizootic in odontocetes. Cases of C. gattii were identified in 42 odontocetes in
Washington and British Columbia between 1997 and 2016. Species affected included harbor
porpoises Phocoena phocoena (n = 26), Dall’s porpoises Phocoenoides dalli (n = 14), and Pacific
white-sided dolphins Lagenorhynchus obliquidens (n = 2). The probable index case was identi-
fied in an adult male Dall’s porpoise in 1997, 2 yr prior to the initial terrestrial outbreak. The
spatiotemporal extent of the C. gattii epizootic was defined, and cases in odontocetes were
found to be clustered around terrestrial C. gattii hotspots. Case-control analyses with stranded,
uninfected odontocetes revealed that risk factors for infection were species (Dall’s porpoises),
age class (adult animals), and season (winter). This study suggests that mycoses are an
emerging source of mortality for odontocetes, and that outbreaks may be associated with
anthropogenic environmental disturbance.
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which is globally distributed and infects immuno -
suppressed individuals, C. gattii has historically
been found primarily in tropical and subtropical
areas where it infects immunocompetent individuals
(Stephen et al. 2002, Byrnes et al. 2009, Harris et
al. 2012, Brito-Santos et al. 2015). Infection targets
the respiratory and central nervous systems in all
affected species (Galanis et al. 2009, Harris et al.
2012, Andreou et al. 2020) and can also cause local-
ized dermatitis, cellulitis, cutaneous ulcers, lymphan-
gitis, and multisystemic fungemia (Duncan et al.
2006a, Galanis et al. 2009, Lester et al. 2011, Rosen-
berg et al. 2016). Cryptococcosis is acquired through
environmental exposure via the inhalation of air-
borne basidiospores or yeasts. In British Columbia
(Canada) and the US Pacific Northwest, these cells
sporulate from cryptococci that reside in decaying
material in soil or trees such as Douglas fir Pseudo -
tsuga menziesii, red alder Alnus rubra, Pacific ma -
drone Arbutus menziesii, Western red cedar Thuja
plicata, grand fir Abies grandis, and Garry oak Quer-
cus garryana (Sorrell 2001, MacDougall & Fyfe 2006,
Kidd et al. 2007a, Datta et al. 2009, Harris et al. 2012,
May et al. 2016). In British Columbia and Washing-
ton, the predominant genotype of C. gattii is VGII,
with 90−95% of infections resulting from the more
virulent molecular type VGIIa and 5−10% of infec-
tions resulting from molecular type VGIIb (Kidd et al.
2004, Datta et al. 2009, Byrnes et al. 2009, 2010,
Ngamskulrungroj et al. 2011, Engelthaler et al. 2014,
Roe et al. 2018). While not contagious, C. gattii is of
particular concern in North America due to its in -
creased prevalence in multiple species and in the
environment since the late 1990s (Stephen et al. 2002,
Datta et al. 2009).

In 1999, a multispecies terrestrial C. gattii epidemic
began in British Columbia and the US Pacific North-
west (Stephen et al. 2002). At least 59 human cases of
C. gattii were recorded in mostly immunocompetent
people living on Vancouver Island from 1999 to 2002
(Hoang et al. 2004). By the end of March 2002, there
were 45 laboratory-confirmed cases of cryptococco-
sis in domestic animals and wildlife on Vancouver
Island (Stephen et al. 2002). By 2004, C. gattii had
infected at least 100 people that lived on Vancouver
Island or had traveled there within a year prior to
onset of symptoms (MacDougall & Fyfe 2006). The
first recorded cases of cryptococcosis in people who
had not recently traveled to Vancouver Island oc -
curred on the lower mainland of British Columbia
between September and December of 2004 (Mac-
Dougall et al. 2007). This coincided with C. gattii-
positive air samples collected on the mainland in

2002 and 2004 (Kidd et al. 2007a,b, MacDougall et al.
2007). In 2004 and 2005, the first human cases of C.
gattii were recorded in the USA (Oregon and Wash-
ington) that were not associated with travel to Van-
couver Island or mainland British Columbia (Mac-
Dougall et al. 2007, Upton et al. 2007, DeBess et
al. 2010). In 2005, the first positive C. gattii envi-
ronmental samples (tree and soil) were recorded
in the USA (Washington State) (MacDougall et al.
2007). By 2006, there were 313 cases recorded in ani-
mals in British Columbia. These primarily occurred
in domestic dogs and cats but also included horses,
pet ferrets Mustela putorius furo, llamas Lama glama,
and eastern gray squirrels Sciurus carolinensis
(Stephen et al. 2002, Kidd et al. 2004, Lester et al.
2004, 2011, Duncan et al. 2005a, 2006b). In the USA,
reported animal cases of C. gattii included 2 dogs,
1 parrot (undisclosed species), and at least 5 cats in
Washington from 2005 to 2008; and 1 cat, 1 dog, and
2 alpacas Vicugna pacos in Oregon in 2007 (Mac-
Dougall et al. 2007, Datta et al. 2009). By 2007, at
least 218 human cases of cryptococcosis were re -
corded in British Columbia (Galanis et al. 2010). By
July 2010, at least 60 human cases of C. gattii were
recorded in the USA from Oregon, Washington,
Idaho, and California, of which 88% were not associ-
ated with travel to Vancouver Island or mainland
British Columbia (DeBess et al. 2010). Reported cases
of C. gattii in any species are infrequent in the litera-
ture after 2013, and it has been suggested that con-
firmed cases may have decreased in both the USA
and Canada (Espinel-Ingroff & Kidd 2015). Neverthe-
less, continued monitoring for the disease is impor-
tant (Acheson et al. 2018, Cohen et al. 2020).

While cryptococcosis has been well-studied in
humans and terrestrial animals, the disease is less
understood in marine mammals (Danesi et al. 2021).
Previous studies have reported isolated instances of
cryptococcosis in free-ranging marine mammals in
Western Australia (Gales et al. 1985), Hawaii (Rot-
stein et al. 2010), South Africa (Mouton et al. 2009),
and California (Huckabone et al. 2015). Beginning in
2000, there were reports of various numbers of
infected odontocetes that died from C. gattii in
British Columbia and Washington, including harbor
porpoises Phocoena phocoena (Stephen et al. 2002,
Huggins et al. 2015, Fenton et al. 2017, Danesi et al.
2021), Dall’s porpoises Phocoenoides dalli (Stephen
et al. 2002, Kidd et al. 2004, Duncan et al. 2006b,
Huggins et al. 2015, Danesi et al. 2021), and Pacific
white-sided dolphins Lagenorhynchus obliquidens
(Norman et al. 2011) In 2007, a case of maternal−fetal
transmission of C. gattii was documented in a preg-
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nant adult female harbor porpoise in Washington
(Norman et al. 2011). In Oregon, cryptococcosis was
documented in 3 porpoises (species undisclosed)
from 2007 to 2008 (Engelhard et al. 2012). Cases of C.
gattii were also documented in harbor seals Phoca
vitulina, including a subadult in Washington in 2007
(Ashley et al. 2020), and a female pup and adult male
in British Columbia in 2014 and 2015, respectively
(Rosenberg et al. 2016).

While previous studies examined the C. gattii out-
break in North America in terrestrial ecosystems and
wildlife, the epizootiology of the disease in marine
mammals had not been characterized. To better
understand this outbreak in marine mammals, we
retrospectively evaluated stranding and necropsy
reports from small odontocetes infected with Crypto-
coccus spp. in Washington and British Columbia
between 1997 and 2020. This included an evaluation
of the spatiotemporal extent of the outbreak and a
case-control study to identify factors associated with
increased risk of infection.

2.  MATERIALS AND METHODS

We reviewed cases for Cryptococcus spp. infection
from necropsies performed on stranded marine
mammals between 1997 and 2020 as authorized by
the Department of Fisheries and Oceans (Canada)
and the National Oceanic and Atmospheric Adminis-
tration’s Marine Mammal Health and Stranding
Response Program (USA). As part of ongoing disease
surveillance efforts, complete postmortem examina-
tions were performed on dead marine mammals in
fresh (Code 2) to moderate (Code 3) postmortem con-
dition (Geraci & Lounsbury 2005) from in and near
the Salish Sea, the 16 925 km2 inland sea shared by
Washington State and British Columbia. Complete
necropsies were performed according to established
protocols with the goal of determining cause of death
and identifying ancillary lesions, e.g. as described by
Raverty et al. (2018). Representative samples from
available tissues, including lesions, were collected
and preserved in 10% neutral buffered formalin.
Fresh samples were also placed in sterile packs and
frozen. 

For histological examination, tissue samples were
embedded in paraffin, sectioned at 3−5 μm, mounted
on glass slides, stained with hematoxylin and eosin,
and examined by a veterinary pathologist (M.M.G. or
S.R.). When tissue samples showed microscopic evi-
dence of intralesional yeast morphologically consis-
tent with Cryptococcus spp., additional diagnostic

tests such as fungal culture and/or molecular studies
on isolates using PCR were performed when pos -
sible. Multiple methods for fungal culture were
employed depending on the laboratory. Swabs from
fresh frozen tissue were either (1) inoculated onto
Sabaraud’s media, incubated at room temperature,
and identified as Cryptococcus spp. using Auxacolor
2 (Sanofi Diagnostics Pasteur) or Uni-Yeast-Tek
(Corning Medical) yeast identification kits (Bowman
& Ahearn 1975, Davey et al. 1995, Chen et al. 2014),
or (2) plated onto Columbia agar with 5% sheep
blood (Oxoid), incubated at 35−37°C with 5−10%
CO2 for up to 7 d, and identified as Cryptococcus spp.
using API Aux (BioMerieux) from 2007 to 2018 or
MALDI-TOF (Bruker) from 2018 to 2020 (Willemsen
et al. 1997, Sivasangeetha et al. 2007, Firacative et
al. 2012). Identification to species, e.g. distinguishing
C. neoformans and C. gattii, was accomplished at
a reference laboratory (British Columbia Centre
for Disease Control or Washington Animal Disease-
Diagnostic Laboratory) using canavine-glycine-
bromthymol (CGB) agar plates (Klein et al. 2009) or
PCR. PCR was used to identify C. gattii genotypes
and molecular types as previously described (Kidd et
al. 2004, 2005, Lee et al. 2010, Norman et al. 2011).
Restriction fragment length poly morphism targeted
the ura5 gene and samples were tested by PCR with
primers amplifying the ura5 gene (Meyer et al. 2003).
Subsequent restriction enzyme analysis of PCR prod-
ucts using 2 panels of restriction enzymes or multi-
locus sequence typing based on partial se quences of
7 housekeeping genes (cap59, gpd1, lac1, plb1, sod1,
ura5, and igs1) allowed for the identification of
molecular types (Meyer et al. 2009, Cog liati 2013).
Sequencing was performed using a BigDye Termina-
tor Cycle Sequencing kit (Applied Bio systems) and
ABI Prism 310 Genetic Analyzer (Ap plied Biosys-
tems), and sequence analysis was performed using
Geneious software (https:// www. geneious.com).

For this study, we defined a case as any odontocete
species within, or near (i.e. Washington’s outer coast
or the southwest coast of Vancouver Island), the Sal-
ish Sea diagnosed with confirmed or probable C. gat-
tii infection between 1997 and 2020. Confirmed cases
included those in which (1) histologic lesions compat-
ible with cryptococcosis were diagnosed and (2) C.
gattii was cultured using CGB agar plates and/or C.
gattii was identified using PCR. Probable cases
included those in which cryptococcosis was diag-
nosed by histologic examination, but differentiation
between C. gattii and C. neoformans species com-
plexes was not performed by culture or molecular
tests. We listed these cases as probable for C. gattii
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because they occurred within the spatiotemporal
extent of the terrestrial C. gattii outbreak in British
Columbia and Washington, during which 100% of
odontocete cases identified to species were C. gattii.

We calculated the proportional mortality ratio
([number of deaths from C. gattii / total number of
deaths] × 100) for odontocetes in British Columbia
and Washington from 1997 to 2020 using the total
number of probable and confirmed cases. We
grouped odontocetes into categories by species, sex,
estimated age class (juvenile, subadult, and adult)
(Gearin et al. 1994, Ferrero & Walker 1996, Ferrero
& Walker 1999), and season of stranding. We did not
include fetuses in total counts because their infec-
tion was contingent upon maternal exposure. We
classified season as winter (January−March), spring
(April− May), summer (June−August), or autumn
(September− December) (Norman et al. 2008). We
used SaTScan software (SaTScan Information Man-
agement Services, version 9.6.1) to identify spa-
tiotemporal clusters of C. gattii cases and adjusted
for temporal and demographic covariates. Retro-
spective space−time permutation models performed
999 replications of Monte Carlo simulations to scan
for both high and low rates of clusters within one-
year aggregations across the entire sampling period.
We identified clusters using Euclidean and non-
Euclidean proximity measures. For Euclidean meas-
ures, SaTScan constructed a centroid around each
point and identified its closest neighbors sequen-
tially until it reached the maximum window size
(Kulldorff 2021). For adjusted, non-Euclidean meas-
ures, SaTScan detected clusters by identifying cases
in relation to their 8 closest neighbors without being
constrained to Euclidean distances. We used non-
Euclidean measures to account for the shoreline
geography of cases as opposed to Euclidean meas-
ures, which find the shortest linear distance
between cases (Kvit et al. 2019). We adjusted spa-
tiotemporal models based on univariate and multi-
variate parameters to account for the relationship
between species, sex, age, and/or season. We con-
sidered clusters to be statistically significant at p <
0.10 and examined demographic and temporal simi-
larities within significant clusters. We visually dis-
played cases with the use of a geographic informa-
tion system (ArcGIS, ESRI).

We performed Fisher’s exact tests (R Core Team
2018, version 3.5.0) to determine associations be -
tween covariates (species, sex, age, and season) for
cases and considered tests to be statistically signifi-
cant at a 2-sided p-value of ≤0.05. Next, we per-
formed Pearson’s chi-squared tests for independence

with Yates’ continuity correction to determine differ-
ences in covariate distribution among cases and con-
trols and considered differences to be statistically
significant at p ≤ 0.05. We defined controls as harbor
porpoises, Dall’s porpoises, or Pacific white-sided
dolphins that stranded in the inland waters of the
Salish Sea between 2000 and 2019, had a complete
gross and histologic examination, and had a cause of
death that was attributed to trauma (predation,
entanglement, vessel strike) or was undetermined,
but underlying infectious disease, including C. gattii,
was excluded to remove any confounding effects
from similar infectious agents. For analyses that con-
sidered only adult females, we included pregnancy
as a covariate and defined it as positive for individu-
als that were pregnant or displayed signs of recent
pregnancy (including lactation or dystocia) and neg-
ative for individuals that were not pregnant or for
which pregnancy was not identified. To compare
potential risk factors for infection by C. gattii in cases
and controls, we used univariate, bivariate, and mul-
tivariate logistic regression approaches. Variables
included species, sex, estimated age class, season,
and pregnancy (for regression on adult females
only). To evaluate the potential effect of small sample
size, we performed a separate sub-analysis exclud-
ing Pacific white-sided dolphins. We assessed overall
fit of each univariate model with p < 0.05 with the
Hosmer-Lemeshow goodness-of-fit test (Hosmer &
Lemeshow 2000), and we cross validated goodness of
fit for nested models using likelihood ratio tests. We
evaluated final model fit using Akaike’s information
criterion (AIC) and calculated the odds ratio (OR) and
95% confidence interval (CI) for the final logistic
regression model.

3.  RESULTS

Between 1997 and 2020, 717 necropsies were con-
ducted on stranded harbor porpoises, Dall’s por-
poises, and Pacific white-sided dolphins in Washing-
ton and British Columbia, and all cases were
screened for Cryptococcus spp. (Table 1, Fig. 1). We
identified 42 cases of C. gattii (22 confirmed, 20 prob-
able) in odontocetes in the marine waters of British
Columbia and Washington for a proportional mortal-
ity ratio of 5.9%. The first case occurred in 1997 and
the last in 2016 (Table 2). For 3 of the 20 probable
cases, CGB culture was performed but neither C.
gattii nor C. neoformans was isolated, despite histo-
logic detection of large numbers of yeasts consistent
with Cryptococcus spp. in various organs.
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Forty cases occurred within the Salish Sea and 2
cases occurred proximal to, but outside of, the Salish
Sea, including one on the southwest coast of Vancou-
ver Island (2003) and another on Washington’s outer
coast (2015). Outbreak hotspots where cases were
clustered included Metro Vancouver Regional Dis-
trict with 19.0% of cases (n = 8), Nanaimo Regional
District (14.3%, n = 6), and Capital Regional District
(11.9%, n = 5; Table 2). Cases included 26 harbor

porpoises (61.9%), 14 Dall’s porpoises (33.3%), and 2
Pacific white-sided dolphins (4.8%) (Table 2). The
majority of cases in harbor porpoises (69.2%, 18/26)
occurred between 2006 and 2012 and in Dall’s
 porpoises (64.3%, 9/14), between 2000 and 2005
(Fig. 2). The highest proportion of cases occurred in
the winter (35.7%, n = 15) followed by autumn
(28.6%, n = 12), spring (23.8%, n = 10), and summer
(11.9%, n = 5). Genotypes of C. gattii were identified
for 40.5% of cases (n = 17/42) and included VGIIa
(n = 12), VGIIb (n = 3), and VGII, molecular type
undetermined (n = 2).

Cumulatively, 47.6% of cases were female (n = 20),
50.0% were male (n = 21), and 2.4% (n = 1) were of
unknown sex. For cases of C. gattii in harbor and
Dall’s porpoises, Fisher’s exact tests revealed a sig-
nificant association between species and sex (p =
0.048). Female harbor porpoises had the greatest
occurrence of infection (38.1%, n = 16) compared to
other demographics. Male harbor porpoises (21.4%,
n = 9) had similar occurrence of infection to male
Dall’s porpoises (23.8%, n = 10), while female harbor
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Species British Washington Total
Columbia

Harbor porpoise 108 (15) 532 (11) 640 (26)
Dall’s porpoise 14 (8) 33 (6) 47 (14)
Pacific white-sided 25 (2) 5 (0) 30 (2)

dolphin

Total 147 (25) 570 (17) 717 (42)

Table 1. Total number of necropsies and Cryptococcus gattii
cases (in parentheses) in British Columbia (Canada) and 

Washington (USA) between 1997 and 2020

Fig. 1. Cases of Cryptococcus gattii in odontocetes in the Salish Sea, 1997−2016
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porpoises had a much greater occurrence (38.1%, n =
16) than female Dall’s porpoises (9.5%, n = 4).

Across all species, 81.0% of cases were adults (n =
34), 9.5% were subadults (n = 4), and 9.5% were
juveniles (n = 4). For cases of C. gattii in harbor and
Dall’s porpoises, Fisher’s exact tests revealed a sig-
nificant association (p ≤ 0.05) between sex and age
(p = 0.045). Adult female porpoises had the greatest
occurrence of infection (45.2%, n = 19) compared to
other demographics. For harbor porpoises and Dall’s
porpoises, there was a sex-based bias (p = 0.045) for
juveniles and subadults (grouped as ‘non-adults’),
with a greater proportion of non-adults being male
(7/8, 87.5%) compared to adults (14/33, 42.4%).
Across all species (including Pacific white-sided dol-
phins), infection by C. gattii was more common in
adult females (45.2%, n = 19) than in adult males
(33.3%, n = 14). Juvenile and subadult cases were
more common in males (16.7%, n = 7) than females
(2.4%, n = 1).

Females that were pregnant (19.0%, n = 8) or were
lactating with signs of a recent pregnancy (4.8%, n =
2) comprised 23.8% of cases. This included 3 cases of
maternal−fetal transmission of Cryptococcus spp.
(e.g. Norman et al. 2011) and 1 pregnant animal in
which histologic evaluation of the fetal tissues did not
indicate vertical transmission (Table 2).

We identified 138 control cases in the inland waters
of Washington between 2000 and 2019. These
included 131 harbor porpoises, 6 Dall’s porpoises,
and 1 Pacific white-sided dolphin. Comparing con-
trols to cases of C. gattii, Pearson’s chi-squared test
for independence showed significant differences
by species (χ2 = 25.989, p < 0.0001). For harbor por-

poises, season (χ2 = 11.94, p = 0.0005) using ‘winter’
as the reference, and age class (χ2 = 10.176, p =
0.001), using ‘adult’ as the reference, were signifi-
cant. Chi-squared tests between harbor porpoise
cases and controls showed no significant differences
by sex or pregnancy status. Fisher’s exact tests
between Dall’s porpoise cases and controls showed
no significant differences among the sexes, age
classes, or seasons.

The logistic regression model that best fit the data
(ΔAIC = 0.00; Hosmer and Lemeshow χ2 = 0.18558,
p = 1.00) was the model that included species, age,
and season (Table 3). Odontocetes that had a higher
probability of infection by C. gattii were adult (OR =
4.31, 95% CI 1.79−11.32) Dall’s porpoises (OR =
10.41, 95% CI 3.36−37.40) that stranded in the winter
(OR = 5.24, 95% CI 1.94−14.47). Harbor porpoises
had a lower probability of infection (OR = 0.10, 95%
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Risk factor p Odds 95% CI
ratio

Species <0.0001
Harbor porpoise 0.10 0.03−0.29
Dall’s porpoise 10.41 3.36−37.40
Season 0.00113
Winter 5.24 1.94−14.47
Summer 0.18 0.05−0.52
Age 0.00171
Adult 4.31 1.79−11.32

Table 3. Multivariate logistic regression analysis of signifi-
cant risk factors for Cryptococcus gattii in stranded odonto-
cetes in the Salish Sea, where Pacific white-sided dolphin

cases (n = 2) and controls (n = 1) were included
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CI 0.03−0.29) compared to Dall’s porpoises and
Pacific white-sided dolphins, when adjusted for sea-
son and age class. Odontocetes had a lower proba-
bility of infection in the summer (OR = 0.18, 95%
CI 0.05−0.52), when adjusted for species and age
class.

Similar results were obtained when Pacific white-
sided dolphins were removed from the analysis. Spe-
cies (p < 0.0001), age (p < 0.0001), and season (p <
0.0001) were still significant predictors of probability of
infection. Adult (OR = 5.71, 95% CI 2.55− 14.18) Dall’s
porpoises (OR = 12.13, 95% CI 4.43−37.15) in the
winter (OR = 6.46, 95% CI 2.71−15.82) had a higher
probability of infection and harbor porpoises had a
lower probability of infection (OR = 0.08, 95% CI
0.03−0.23). For analyses that included and excluded
Pacific white-sided dolphins, sex (p = 0.750) and preg-
nancy (p = 0.552, adjusted for sex and age class) were
not significant predictors of infection.

Ten significant (p < 0.10) spatiotemporal Euclidean
models were identified across the entire sampling
period (Table 4). These included the univariate
models adjusted for species, sex, season, and age;
the bivariate models adjusted for sex and season,
age and season, and species and sex (cluster 1: p =
0.048; cluster 2: p = 0.097); the multivariate model
adjusted for species, age, and sex; and the unad-
justed model.

Seven out of 10 significant Euclidean models iden-
tified 11 cases (Cluster A) that were centered in
Qualicum Bay, Nanaimo Regional District, between

1999 and 2006 (Fig. 3, Table 5). Cluster A consisted of
female harbor porpoises (n = 4), male harbor por-
poises (n = 2), male Dall’s porpoises (n = 4), and male
Pacific white-sided dolphin (n = 1). Two out of 10 sig-
nificant Euclidean models identified 6 cases (Cluster
B) that were centered in the waters of Nanaimo
Regional District between 1999 and 2003 (Fig. 3,
Table 5). Cluster B consisted of female harbor por-
poises (n = 2) and male Dall’s porpoises (n = 4). All 6
cases in Cluster B were included within Cluster A.

A total of 5 significant (p < 0.10) spatiotemporal
non-Euclidean models, detected using case proxim-
ity to its 8 nearest neighbors, were identified across
the entire sampling period (Table 4). These included
the univariate models adjusted for sex, age, and spe-
cies; the bivariate model adjusted for age and season;
and the unadjusted model. Four out of 5 significant
non-Euclidean models identified Cluster B as a sig-
nificant cluster in the waters of Nanaimo Regional
District between 1999 and 2003 (Fig. 3, Table 5).

4.  DISCUSSION

Retrospectively, odontocetes were a sentinel group
for the multi-species Cryptococcus gattii epizootic in
British Columbia and Washington State which began
on Vancouver Island during the late 1990s. Despite
limited resources for diagnostic tests in some strand-
ing networks, 22 of the 42 cases of Cryptococcus
gattii were confirmed histologically, and culture or
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Model p Test Date Radius Center coordinates Cases        Cluster
statistic Start End (km) (°N, °W) n

Euclidean
Species × Age × Sex 0.038 4.62 2007/1/1 2016/12/31 68.46 49.2669, 124.1776 11                A
Species × Sex (1) 0.048 5.08 2007/1/1 2016/12/31 68.46 49.2669, 124.1776 11                A
Sex × Season 0.048 5.19 2007/1/1 2016/12/31 68.46 49.2669, 124.1776 11                A
Species 0.064 5.14 2007/1/1 2016/12/31 68.46 49.2669, 124.1776 11                A
Sex 0.064 5.34 1999/1/1 2002/12/31 41.53 49.4704, 123.7545 6                 B
Age × Season 0.064 4.63 2007/1/1 2016/12/31 68.46 49.2669, 124.1776 11                A
No parameters 0.065 5.67 1999/1/1 2002/12/31 41.53 49.4704, 123.7545 6                 B
Season 0.076 5.44 2007/1/1 2016/12/31 68.46 49.2669, 124.1776 11                A
Age 0.091 5.22 2007/1/1 2016/12/31 68.46 49.2669, 124.1776 11                A
Species × Sex (2) 0.097 4.73 1999/1/1 2004/12/31 135.44 47.3561, 122.4478 13    Neither A nor B

Non-Euclidean
No parameters 0.011 5.67 1999/1/1 2002/12/31 − − 6                 B
Sex 0.015 5.34 1999/1/1 2002/12/31 − − 6                 B
Age 0.032 5.01 1999/1/1 2003/12/31 − − 6                 B
Age × Season 0.069 4.08 2004/1/1 2012/12/31 − − 6                 B
Species 0.083 4.43 1999/1/1 2002/12/31 − − 6                 B

Table 4. Significant (p < 0.10) spatiotemporal models from 1 January 1997 to 31 December 2016, in order of significance. Non-
Euclidean models were based on nearest neighbor and thus do not provide radius or center coordinates. Note that there were
2 significant clusters for the Euclidean model adjusted for species and sex (labeled ‘1’ and ‘2’). Dates are given as yr/mo/d
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molecular techniques did not identify any cases of C.
neoformans. Although not identified to species, the
first probable case of cryptococcosis in the epizootic
occurred in an adult male Dall’s porpoise in Tacoma,
Washington, in 1997, 2 yr prior to the recognition of
the C. gattii outbreak in humans in 1999 (Galanis et
al. 2009). Histologically, the cause of death in this
animal was attributed to pulmonary cryptococcosis
caused by C. neoformans; however, culture was not
performed to differentiate C. neoformans from C.
gattii, as this was 5 yr before C. gattii and C. neofor-
mans were differentiated into 2 species complexes

(Kwon-Chung et al. 2002). Two de -
cades later, attempts were made to
amplify Cryptococcus spp. nucleic
acid from paraffin-embedded tissue
from this case at the Washington Ani-
mal Disease Diagnostic Laboratory;
however, no nucleic acid could be
amplified, possibly due to degradation
of DNA over time. Be cause C. neofor-
mans was not isolated from odonto-
cetes in the Salish Sea during this time

period, and due to the onset of widespread C. gattii
cases identified just after this case, it is possible that
this individual represents the earliest recorded case
of C. gattii in the epizootic.

Beach-cast or floating carcasses of C. gattii-
infected odontocetes were recovered near the ter-
restrial C. gattii hotspots identified by Kidd et al.
(2004, 2007a) in British Columbia and Washington.
From 1997 to 2005, 16 cases of C. gattii in odonto-
cetes appeared in Washington and British Colum-
bia, largely on eastern Vancouver Island where the
outbreak was originally identified (Stephen et al.
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Nanaimo Sunshine Metro Comox Capital Total
Coast Vancouver Valley

Cluster A 6 1 1 2 1 11
Cluster B 4 1 1 0 0 6

Table 5. Number of cases by British Columbia (Canada) regional district that
were identified in significant clusters by SaTScan software (p < 0.010): Cluster
A and Cluster B). Note that all cases in Cluster B were also identified in 

Cluster A

Fig. 3. Cases of Cryptococcus gattii in odontocetes that were identified as significant clusters by SaTScan software. (A) Cases
in Cluster A (n = 11) that were detected by 7 Euclidean models. (B) Cases in Cluster B (n = 6) that were detected by 2 Euclidean 

and 4 non-Euclidean models. All cases in Cluster B were also included in Cluster A
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2002). Particularly, between 1999 and 2003, it
appears that significant risk factors for infection by
C. gattii in odontocetes included proximity to the
coastlines of Nanaimo Regional District on eastern
Vancouver Island, Metro Vancouver Regional Dis-
trict on mainland British Columbia, or the Sunshine
Coast Regional District on mainland British Colum-
bia (Cluster B, Fig. 3). Odontocetes that were posi-
tive for C. gattii in these regions were recovered in
close proximity to areas identified by Kidd et al.
(2007a) as having high rates of human and nonhu-
man cases, and environmental isolates of C. gattii
in coastal Douglas fir and coastal western hemlock
Tsuga heterophylla biogeoclimatic zones (Kidd et
al. 2007a). This included 2 Dall’s porpoises and 2
harbor porpoises that stranded in the Canadian
Gulf Islands, which was identified as a hotspot for
C. gattii environmental isolates (MacDougall et al.
2007).

Beginning in 2006, odontocete cases of cryptococ-
cosis markedly increased in Washington, including
in the lower Puget Sound, which coincided with the
increase in cases of C. gattii in humans and domestic
animals and the identification of C. gattii-positive
tree and soil samples in Washington in 2005 (Mac-
Dougall et al. 2007). While it is possible that C. gattii-
infected odontocetes that stranded in Washington
may have acquired the disease in British Columbia, it
is likely that infected harbor porpoises and Dall’s
porpoises stranded near the locations where they
acquired the disease due to their relatively small
home range and site fidelity (Hanson 2007). This sup-
ports the concept of multispatial and multitemporal
disease acquisition of C. gattii in British Columbia
and Washington over the duration of the epizootic.

From 2006 to 2016, 26 new cases of C. gattii in
odontocetes were recorded in Washington, Vancou-
ver Island, and the southern mainland of British
Columbia. These were largely harbor porpoises (n =
21). Initially, between 1997 and 2005, there were
more infected Dall’s porpoises than harbor porpoises
(n = 10 and n = 5, respectively); however, between
2006 and 2016, infection increased for harbor por-
poises (n = 21) compared to Dall’s porpoises (n = 4).
This may be explained by the increased abundance
of harbor porpoises and the corresponding decrease
in abundance of Dall’s porpoises in some areas of the
Salish Sea, especially Puget Sound, from 1994 to
2014 (Evenson et al. 2016, Jefferson et al. 2016, A. J.
Warlick et al. unpubl.). Cases of C. gattii in odonto-
cetes began to taper off in 2011, which coincided
with the 2012−2013 decline of C. gattii in humans
and terrestrial animals in Canada and the USA

(Espinel-Ingroff & Kidd 2015). As of 1 January 2021,
the last recorded case of C. gattii in odontocetes
occurred in an adult female harbor porpoise that died
and stranded on San Juan Island in October 2016.
There is no apparent rationale for the relatively sud-
den decline in cases of C. gattii in small odontocetes.
The decline in cases in humans and terrestrial ani-
mals since 2012−2013 is also poorly understood and
could have been attributed to changes in low num-
bers and that only confirmed cases were reported
(Espinel-Ingroff & Kidd 2015). As C. gattii seemed to
decline in small odontocetes, another novel fungal
disease, mucor mycosis, emerged in the Salish Sea in
2012, affecting harbor seals, harbor porpoises, and
an endangered southern resident killer whale Orci-
nus orca (Huggins et al. 2020).

All C. gattii genotypes identified in odontocetes
(n = 17) were VGII, the predominant genotype of
the C. gattii epizootic in British Columbia and
Washington (Kidd et al. 2004, Ngamskulrungroj et
al. 2011, En gelthaler et al. 2014, Roe et al. 2018).
This included 12 cases of the more virulent, major
molecular type VGIIa (90−95% of infections, Byrnes
et al. 2009); 3 cases of the less virulent, minor
molecular type VGIIb (5−10% of infections); and 2
cases with genotype VGII (molecular type undeter-
mined). To our knowledge, C. gattii molecular type
VGIIb had not been reported in marine mammals
prior to this study, expanding the number of possi-
ble molecular types of C. gattii that can infect mar-
ine mammals.

Our spatial and temporal analyses of odontocete
cases suggest that multiple sporulation events
likely occurred over time and space during this
epizootic, with individuals closest to the point
source for airborne basidiospores or yeast cell dis-
tribution most likely to be exposed. Certain biogeo-
climatic conditions are strongly associated with the
distribution of C. gattii in British Columbia, includ-
ing daily average January temperatures >0°C, low
elevation (<770 m and average 100 m), coastal
Douglas fir forests, and very dry regions of coastal
western hemlock forests (Mak et al. 2010). Anthro-
pogenic factors also might have played a role in
the epizootic of C. gattii in British Columbia and
the US Pacific Northwest. For example, soil distur-
bances associated with construction and deforesta-
tion have been hypothesized as actions that could
incite basidiospores or yeast cell aerosolization
(Duncan et al. 2006c, Fyfe et al. 2008). Also, it has
been hypothesized that temperate range expansion
of C. gattii from tropical and subtropical areas to
the site of this epizootic may have been associated
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with warmer average global temperatures that
increase the susceptibility of a tree to fungal colo-
nization (Cohen et al. 2002, Benedict & Park 2014).
Dispersal mechanisms of C. gattii in temperate
areas include aerosolization during forestry and
municipal activities such as wood chipping, as well
as human-mediated dispersal from footwear (Kidd
et al. 2007b). It has been shown that domestic ani-
mals that were active outdoors or lived near a com-
mercial environmental disturbance such as soil dis-
ruption or logging during the C. gattii epizootic
had a significantly increased risk of infection (Dun-
can et al. 2006a). Kidd et al. (2007a) found that
seawater samples were positive for C. gattii around
Vancouver Island, near areas with high concen -
trations of C. gattii in trees and soil. Odontocetes
likely acquired the disease by inhaling basidio -
spores or yeasts at the air−water surface interface
during respiration. The large tidal volume of air
exchange at each surface respiration may play a
role in increasing the possibility of initial exposure
to C. gattii (Danesi et al. 2021).

While there were more cases in harbor porpoises
compared to Dall’s porpoises (n = 26 and 14, respec-
tively), case control comparison revealed that Dall’s
porpoises were at greater risk of infection (OR 10.41)
compared to harbor porpoises (OR = 0.10; Table 3).
This is particularly interesting considering that harbor
porpoises stranded more than Dall’s porpoises in
Washington from 2000 to 2019 (n = 814 and 86, respec-
tively; A. J. Warlick et al. unpubl.). Of particular note
are 3 cases of Dall’s porpoises in Puget Sound, an
area where harbor porpoises have in creased in recent
years while Dall’s porpoises have decreased (Evenson
et al. 2016). It is uncertain why Dall’s porpoises had
greater risk of infection, and it may be due to behav-
ioral, physiological, cellular, and/or molecular pro-
cesses. It is possible that surface activity behaviors
increased the risk of infection for Dall’s porpoises as
they are known to display such behaviors, e.g. bow-
riding, that entail surfacing in short intervals which
may increase the possibility of exposure and suscep-
tibility to infection (Law & Blake 1994, Hall 2011).

The case control study shows that odontocetes with
a higher risk of infection were adults (OR = 4.31) dur-
ing winter (OR = 5.24; Table 3). Adults may have
acquired the fungal infection more than other age
classes because they had a greater time period over
which to be exposed, as porpoises undergo rapid
development and mature at an earlier age than other
odontocetes (Read & Hohn 1995, Noren et al. 2014).
The greater number of cases in the winter, particu-
larly adult females, aligns with the seasonal calving

trends of harbor porpoises in the Salish Sea in which
adult female harbor porpoises are either pregnant or
raising calves in the winter (Norman et al. 2018). This
could be associated with energy costs related to
maternal investment, including gestation and lacta-
tion, which are physiological stressors that nega-
tively impact maternal odontocete energy budgets
(Read 2001). Finally, it is worth noting that the habi-
tats and locations used by pregnant and postpartum
porpoises may pose a greater risk for infection than
pregnancy itself, particularly if these are near sites of
construction or deforestation.

Reporting bias of marine mammal strandings is
heavily influenced by human populations, geo-
graphic elements, prevailing currents, and temporal
animal movements, but likely did not affect our
analyses. While odontocete strandings are reported
year-round in Washington and British Columbia, the
majority are reported in the summer, likely in part
due to increased human presence at coasts, seasonal
animal movement, and oceanographic features (Nor-
man et al. 2004). An analysis by Norman et al. (2004)
of marine mammal strandings in Washington and
Oregon from 1930 to 2002 found that harbor por-
poises primarily stranded in the summer (50%) and
Dall’s porpoises stranded in the spring (44%) and
summer (32%). Conversely, in this case series, C.
gattii-infected odontocetes were recovered more in
the winter (35.7%, 15/42) and less in the summer
(11.9%, 5/42). The case control study also supported
these findings and showed that winter was a risk fac-
tor for infection (OR = 5.24). The pathogenesis of C.
gattii in odontocetes is not well known, including the
interval between infection and death, so it is possible
that odontocetes acquired the infection in summer or
autumn and had a slow disease progression that
resulted in their death during winter. We do not
know the incubation period, the period between ini-
tial infection and development of clinical signs, for C.
gattii in odontocetes. Humans exposed to C. gattii in
British Columbia had variable incubation periods
that ranged from 6 wk (Lindberg et al. 2007) to 13 mo
(Georgi et al. 2009), with a median of 6 to 7 mo (Mac-
Dougall & Fyfe 2006, Galanis et al. 2009). Incubation
periods in domestic animals are variable (Maccolini
et al. 2017); for instance, 2 cats progressed to clinical
disease between 4 and 6 mo after exposure to C. gat-
tii (Duncan et al. 2005b) and another cat developed
disease >8 yr post-exposure (Castrodale et al. 2013).

Other fungal diseases reported in odontocetes
include blastomycosis, lacaziosis, and, more recently,
mucormycosis (Higgins 2000, Waltzek et al. 2012,
Huggins et al. 2020). Previously, mycoses were usu-
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ally secondarily associated with immunosuppressive
morbillivirus infections and rarely primary epizootics
in marine mammals, perhaps because environmental
exposure and potential for contagious spread are
low; however, epizootic and other data suggest that
fungal pathogens are emerging as primary patho-
gens in odontocetes, particularly in nearshore envi-
ronments associated with human disturbances such
as agriculture, construction, and forestry (Reidarson
et al. 2018). Continued monitoring for Cryptococcus
gattii and other fungal pathogens is important for
understanding disease risks for marine mammal pop-
ulations in the Salish Sea, including endangered
southern resident killer whales. Further research is
needed to fully characterize the pathogenesis of C.
gattii-associated cryptococcosis in cetaceans and to
examine the seroprevalence of C. gattii in cetaceans
in order to better understand the risk factors for mor-
tality. Identification of a presumed C. gattii-infected
Dall’s porpoise 2 yr prior to the first case in humans
demonstrates how marine mammals can be sentinels
for diseases of humans and domestic animals and
supports the benefits of taking a ‘one-health’ ap proach
(Fenton et al. 2017, Mackenzie & Jeggo 2019).
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