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Abstract
Aim: Fisheries	bycatch	is	a	major	threat	to	populations	of	protected	species	such	as	
marine	mammals,	seabirds	and	sea	turtles,	and	static	management	approaches	are	
often	unsuccessful	in	mitigating	bycatch	of	these	highly	mobile	species.	Combining	
species	distribution	models	(SDMs)	with	oceanographic	data	has	been	proposed	as	a	
means	of	predicting	when	and	where	bycatch	is	likely	to	occur.	However,	studies	as-
sessing	whether	SDMs	can	accurately	predict	 fisheries	bycatch	using	 independent	
data	are	lacking.	Assessing	model	performance	using	independent	data	is	necessary	
to	test	whether	a	model	is	generalizable,	and	this	is	particularly	important	for	models	
with	management	applications.	Here,	we	use	short‐finned	pilot	whale	(Globicephala 
macrorhynchus)	bycatch	in	a	pelagic	longline	fishery	as	a	case	study	to	inform	efforts	
to	mitigate	fisheries	bycatch.
Location: Offshore	waters,	north‐east	United	States.
Methods: We	integrated	telemetry	and	oceanographic	data	using	mixed‐effects	gen-
eralized	additive	models	to	predict	pilot	whale	occurrence	and	assessed	model	per-
formance	 using	 k‐folds	 cross‐validation.	We	 then	 evaluated	 the	model's	 ability	 to	
predict	pilot	whale	bycatch	using	data	from	independent	on‐board	observers.
Results: The	model	performed	well,	and	predictions	were	strongly	and	significantly	
correlated	with	observed	rates	of	bycatch	in	space	and	time.	Temperature	and	prox-
imity	to	mesoscale	oceanographic	features	(thermal	fronts	and	sea	level	anomalies)	
were	important	predictors	of	pilot	whale	occurrence,	and	as	a	result,	spatial	predic-
tions	of	the	risk	of	bycatch	varied	through	time.
Main conclusions: Our	findings	demonstrate	that	SDMs	can	be	used	to	accurately	
predict	times	and	places	with	a	high	risk	of	bycatch,	and	illustrate	that	models	using	
dynamic	oceanographic	variables	can	identify	smaller,	more	specific	focal	manage-
ment	regions	than	static	management	approaches.	Combining	SDMs	with	near	real‐
time	 or	 forecasted	 environmental	 conditions	 could	 provide	 a	 promising	 tool	 for	
decreasing	bycatch	and	will	be	valuable	in	developing	adaptive	management	strate-
gies	to	mitigate	fisheries	bycatch	of	protected	species.
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1  | INTRODUC TION

Marine	systems	are	highly	dynamic,	and	the	distribution	of	marine	or-
ganisms	responds	to	variation	in	physical	parameters	across	a	range	
of	spatial	and	temporal	scales	(Genin	et	al.,	1994;	Hunt	&	Schneider,	
1987;	McManus	 &	Woodson,	 2012;	 Perry,	 Low,	 Ellis,	 &	 Reynolds,	
2005;	 Sims	&	Quayle,	 1998).	 Spatial	 and	 temporal	 variation	 in	 the	
distribution	of	marine	species	leads	to	management	challenges	and	
erodes	 the	 efficacy	 of	 static	 approaches,	 particularly	 those	 based	
on	 spatial	 management	 (Hazen	 et	 al.,	 2018;	Maxwell	 et	 al.,	 2015;	
O'Keefe,	Cadrin,	&	Stokesbury,	2013).	Adaptive	approaches	may	pro-
vide	more	effective	management	of	marine	species,	particularly	for	
highly	mobile	species	that	forage	over	large	spatial	scales	and	exploit	
dynamic	and	ephemeral	foraging	areas	(Cotté,	Park,	Guinet,	&	Bost,	
2007;	Dunn,	Maxwell,	Boustany,	&	Halpin,	2016;	Hazen	et	al.,	2016;	
Irons,	1998;	Johnston,	Thorne,	&	Read,	2005;	Lewison	et	al.,	2014;	
Maxwell	 et	 al.,	 2015;	 Moore	 &	 Lien,	 2007;	 Weimerskirch,	 2007).	
Species	distribution	models	(SDMs)	can	provide	valuable	sources	of	
information	 to	 inform	 such	 adaptive	management	 approaches	 and	
can	be	used	to	predict	times	and	places	where	focal	species	are	most	
likely	to	occur	(Hazen	et	al.,	2016,	2018;	Žydelis	et	al.,	2011).

Accurately	predicting	species	occurrence	could	provide	a	means	
of	 predicting	 and	 ultimately	 minimizing	 fisheries	 bycatch	 (Hobday	
&	 Hartmann,	 2006;	 Howell,	 Kobayashi,	 Parker,	 Balazs,	 &	 Polovina,	
2008),	 the	 incidental	 mortality	 of	 non‐target	 species	 in	 fisheries	
(Lewison	et	al.,	2014).	Fisheries	bycatch	is	an	important	source	of	mor-
tality	for	many	marine	species	and	is	a	major	threat	to	populations	of	
many	long‐lived	species	of	marine	mammals,	seabirds	and	sea	turtles	
(Lewison,	Crowder,	Read,	&	Freeman,	2004;	Moore	et	al.,	2009;	Read,	
Drinker,	 &	 Northridge,	 2006;	 Reeves,	McClellan,	 &	Werner,	 2013).	
Some	bycaught	species	are	released	alive	but	are	injured	after	becom-
ing	entangled	in	fishing	gear,	which	can	result	in	subsequent	mortality	
(Read,	2008).	Many	of	these	species	exhibit	very	low	rates	of	popu-
lation	growth	due	 to	 life	history	 constraints	 (Barlow,	1995;	Reilly	&	
Barlow,	1986),	making	them	particularly	vulnerable	to	the	effects	of	
bycatch,	especially	if	this	results	in	a	reduction	in	adult	survival	rates	
(Lewison	et	al.,	2004).	In	some	species,	bycatch	results	from	the	inten-
tional	removal	of	bait	or	catch	from	fishing	gear	by	a	predator	which	
subsequently	becomes	hooked	and/or	entangled;	in	such	cases,	these	
interactions	also	 impose	a	direct	time	and	economic	cost	to	fishers.	
These	interactions,	referred	to	as	depredation,	are	an	increasingly	fre-
quent	problem	in	several	fisheries	(Read,	2008;	Read	et	al.,	2006).

To	date,	most	bycatch	mitigation	measures	have	focused	on	gear	
modifications,	 fixed	marine	protected	areas	or	 static	 time–area	clo-
sures	to	the	fishery	(Carretta	&	Barlow,	2011;	Dalton	&	Ralston,	2004;	
Lewison	 et	 al.,	 2014;	Werner,	 Kraus,	 Read,	 &	 Zollett,	 2006).	 Static	
time–area	 closures	 are	 unpopular	 with	 fishers	 (Bisack	 &	 Sutinen,	

2006;	Murray,	Read,	&	SoLow,	2000;	Read,	2013)	and	may	be	 inef-
fective	 because	 the	 spatial	 distribution	 of	 bycaught	 species	 is	 dy-
namic	(Hartel,	Constantine,	&	Torres,	2015;	Žydelis	et	al.,	2011).	The	
use	of	dynamic	spatial	approaches	has	been	suggested	as	a	means	of	
improving	 the	efficacy	of	management	and	decreasing	 fisheries	by-
catch	(Dunn,	Boustany,	&	Halpin,	2011;	Dunn	et	al.,	2016;	Hazen	et	
al.,	2018).	Such	dynamic	management	approaches	could	 reduce	 the	
extent	 of	 the	managed	 area,	 providing	 conservation	 benefits	while	
minimizing	economic	costs	to	fishery	participants	(Dunn	et	al.,	2011;	
Hazen	et	al.,	2016,	2018;	Maxwell	et	al.,	2015).

High‐resolution	satellite	 imagery	and	bathymetric	grids	provide	
continuous	measurements	 of	 oceanographic	 variables	 across	 large	
spatial	 scales	 and,	 therefore,	 provide	 critical	 tools	 to	 help	 predict	
the	distribution	of	highly	mobile	species.	 Improvements	 in	the	res-
olution	of	available	cloud‐free	satellite	 imagery	(e.g.,	the	Group	for	
High	Resolution	SST)	have	advanced	our	ability	to	resolve	dynamic	
oceanographic	 variables.	 Similarly,	 bathymetric	 models	 have	 been	
improved	greatly	 in	 recent	years	by	 incorporating	additional	depth	
soundings	and	data	from	a	variety	of	sources	(Beaman,	O'Brien,	Post,	
&	Santis,	2011;	Weatherall	et	al.,	2015).	These	models	have	provided	
better	characterizations	of	the	ocean	floor	and	have	enabled	the	de-
velopment	of	derived	metrics	such	as	slope	maps	to	examine	specific	
geological	features	and	morphostructures	associated	with	the	ocean	
floor	 (Esteban,	Tassone,	Menichetti,	&	 Lodolo,	 2017).	At	 the	 same	
time,	improvements	in	the	use	of	satellite‐linked	telemetry	have	facil-
itated	the	study	of	marine	predator	movements	(Hart	&	Hyrenbach,	
2009;	Ropert‐Coudert	&	Wilson,	2005).	Taken	 together,	 these	ad-
vances	provide	the	foundation	for	quantitative	studies	predicting	the	
occurrence	of	fisheries	bycatch	using	bathymetric	and	near	real‐time	
oceanographic	data	(Roe	et	al.,	2014;	Žydelis	et	al.,	2011).

Depredation	 poses	 an	 additional	 challenge	 for	 management	 ef-
forts	aimed	at	minimizing	bycatch;	fishing	vessels	and	fishing	gear	can	
serve	as	an	attractant	to	depredating	species,	and	depredating	animals	
may	follow	or	seek	out	fishing	vessels	in	order	to	increase	the	likeli-
hood	of	encountering	an	easily	accessible	meal	in	the	form	of	bait	or	
catch	(Gilman,	Brothers,	McPherson,	&	Dalzell,	2007;	Kock,	Purves,	&	
Duhamel,	2006;	Schakner,	Lunsford,	Straley,	Eguchi,	&	Mesnick,	2014;	
Thode,	Straley,	Tiemann,	Folkert,	&	O'Connell,	2007).	Thus,	bycatch	
might	occur	in	regions	outside	of	the	predicted	habitat	range	for	dep-
redating	species.	This	is	particularly	true	for	species	such	as	cetaceans	
since	social	 learning	plays	a	major	 role	 in	 foraging	behaviour	 (Baird,	
Abrams,	&	Dill,	1992;	Baird	&	Whitehead,	2000;	Rendell	&	Whitehead,	
2001;	 Schakner	 et	 al.,	 2014).	 It	 is	 therefore	 important	 to	 assess	
whether	SDMs	can	be	used	to	accurately	predict	the	risk	of	bycatch	
before	developing	dynamic	spatial	approaches	as	a	mitigation	tool.

Here,	we	use	 short‐finned	pilot	whale	 (Globicephala macrorhyn-
chus)	bycatch	in	a	pelagic	longline	fishery	as	a	case	study	to	inform	
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efforts	 to	model	 and	mitigate	 fisheries	 bycatch.	 Short‐finned	 pilot	
whales	in	the	Northwest	Atlantic	depredate	bait	and	catch	in	the	U.S.	
pelagic	 longline	 fishery	 (Waring,	 Josephson,	 Maze‐Foley,	 &	 Rosel,	
2015).	Some	whales	become	entangled	or	hooked	as	a	result	of	these	
interactions,	resulting	in	mortality	and	serious	injury	(M/SI).	The	by-
catch	of	marine	mammals	in	the	United	States	is	regulated	under	the	
1994	amendments	to	the	Marine	Mammal	Protection	Act	 (MMPA).	
Levels	 of	 bycatch	 exceeding	 a	 biological	 reference	 point	 (potential	
biological	 removal	or	PBR)	 are	 considered	 to	be	unsustainable	 and	
must	be	reduced	to	below	this	threshold	through	negotiated	agree-
ments	of	stakeholders	on	a	Take	Reduction	Team,	later	translated	into	
rulemaking	by	the	management	agency	(McDonald,	Lewison,	&	Read,	
2016).	The	five‐year	average	of	M/SI	 for	Northwest	Atlantic	short‐
finned	pilot	whales	in	the	pelagic	longline	fishery	recently	exceeded	
PBR,	and	thus,	the	stock	is	now	considered	to	be	strategic	under	the	
MMPA	 (US	OFR,	2016).	Previous	attempts	 to	decrease	pilot	whale	
bycatch	have	proven	to	be	unsuccessful.	Fishing	restrictions	evalu-
ated	to	date	have	included	increased	observer	coverage	for	vessels	
fishing	within	the	Cape	Hatteras	Special	Research	Area	(CHSRA)	and	
a	reduction	in	mainline	length	to	less	than	20	nm	for	longline	vessels	
fishing	 in	 the	Mid‐Atlantic	Bight	 (US	OFR,	2009).	Preliminary	 tests	
of	 acoustic	 deterrents	 to	 dissuade	 pilot	 whales	 from	 approaching	
longlines	have	also	proven	unsuccessful	 in	reducing	depredation	of	
catch	 and	 bait	 (A.	 Read,	 unpublished	 data).	 The	 shelf	 break	 region	
provides	important	pilot	whale	habitat	(Thorne	et	al.,	2017),	and	an	
examination	of	pilot	whale‐longline	overlap	in	the	Northwest	Atlantic	
suggested	that	shifting	longline	effort	into	offshore	waters	would	de-
crease	bycatch	by	more	than	50%	(Stepanuk,	Read,	Baird,	Webster,	
&	 Thorne,	 2018).	 However,	 such	 a	 change	 would	 strongly	 impact	
fishers,	requiring	that	a	large	proportion	of	longliners	would	have	to	
alter	their	fishing	practices.	Temporal	patterns	in	rates	of	pilot	whale	
bycatch	suggest	that	dynamic	habitat	variables	may	be	important	to	
understanding	and	predicting	pilot	whale	occurrence	(Stepanuk	et	al.,	
2018).	Incorporating	dynamic	oceanographic	variables	into	predictive	
habitat	models	to	predict	high‐risk	areas	of	bycatch	could	provide	a	
means	of	decreasing	pilot	whale	bycatch	in	the	longline	fishery,	while	
reducing	the	extent	of	the	area	that	longliners	would	need	to	avoid.

Until	recently,	knowledge	of	short‐finned	pilot	whale	habitat	use	
was	limited	due	to	a	lack	of	species‐level	data	(Waring,	Josephson,	
Maze‐Foley,	&	Rosel,	2013).	Short‐finned	pilot	whales	are	difficult	
to	 differentiate	 from	 their	 congener,	 the	 long‐finned	 pilot	 whale	
(Globicephala melas),	 at	 sea	 except	 under	 ideal	 conditions	 (Rone	&	
Pace,	 2012).	 The	 two	 species	 differ	 in	 their	 distribution	 and	ecol-
ogy,	and	only	short‐finned	pilot	whales	are	 threatened	by	bycatch	
in	the	pelagic	longline	fishery	(Gannon,	Read,	Craddock,	Fristrup,	&	
Nicolas,	 1997;	Mintzer,	Gannon,	Barros,	&	Read,	 2008;	Waring	 et	
al.,	2013,	2015).	Our	analysis	uses	data	from	recent	satellite	telem-
etry	studies,	in	which	the	species	identity	of	whales	at	the	tagging	
location	was	confirmed	by	genetic	analysis	of	biopsy	samples,	to	in-
vestigate	 the	 habitat	 use	 of	 short‐finned	 pilot	whales.	 These	 data	
allow	us	to	examine	species–environment	relationships	in	detail	and	
to	develop	predictive	models	for	short‐finned	pilot	whales	(Figure	1).

The	objectives	of	our	study	were	to	use	pilot	whale	bycatch	in	
the	Atlantic	pelagic	longline	fishery	as	a	case	study	to:

1.	 Develop	 probabilistic	 predictions	 of	 occurrence	 for	 bycaught	
species	using	 telemetry	data	and	spatial	 grids	of	environmental	
data;

2.	 Assess	whether	these	predictions	can	be	used	to	accurately	pre-
dict	fisheries	bycatch	using	data	recorded	by	government	fisher-
ies	observers;	and

3.	 Compare	the	extent	of	managed	areas	predicted	using	static	and	
dynamic	management	approaches	for	mitigating	bycatch.

2  | METHODS

2.1 | Study area

This	 research	 focused	 on	 the	 Mid‐Atlantic	 Bight	 (MAB)	 and	
Northeast	 Coast	 (NEC)	 regions	 managed	 by	 the	 National	 Marine	
Fisheries	 Service	 (NMFS;	 Figure	 2d;	 boundaries	 of	 the	 MAB	 and	
NEC	 regions	 defined	 here	 as	 33.5°N	 and	 43°N,	 respectively,	 ex-
tending	from	the	coast	out	to	60°W),	because	satellite‐tagged	pilot	

F I G U R E  1  Schematic	showing	
research	methods	used	to	develop	spatial	
predictions	of	bycatch	risk	of	short‐finned	
pilot	whales	in	the	Northwest	Atlantic.	
Models	were	assessed	with	k‐folds	cross‐
validation,	and	data	from	an	independent	
on‐board	observer	program	were	used	
to	evaluate	the	predictive	capacity	for	
identifying	locations	and	times	with	a	high	
risk	of	bycatch.	GAMMs:	Mixed‐effects	
generalized	additive	models;	POP:	Pelagic	
Observer	Program
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whales	(described	below)	stayed	within	these	regions,	and	because	
the	 vast	majority	 of	 observed	pilot	whale‐longline	 bycatch	occurs	
within	these	regions	 (Garrison,	2007).	 In	this	region,	the	continen-
tal	shelf	drops	off	steeply,	with	depths	typically	increasing	from	less	
than	200	m	to	more	than	1,000	m	over	a	cross‐shelf	distance	of	less	
than	10	km.	The	steep	bathymetry	in	this	region	is	in	contrast	to	the	
more	gradually	sloping	continental	shelf	in	the	South	Atlantic	Bight	
(SAB),	where	depths	typically	increase	from	200	to	1,000	m	over	a	
distance	of	more	than	100	km	(Figure	2).	Temperature	regimes	are	
dominated	by	the	effects	of	the	warm	waters	of	the	Gulf	Stream	in	
the	south	and	the	cool	Labrador	slope	water	to	the	north.	The	posi-
tion	of	these	two	water	masses	have	dramatic	effects	on	tempera-
ture	regimes,	and	water	temperatures	can	vary	dramatically	in	space	
and	time,	both	within	and	between	years.	For	example,	summer	sea	
surface	temperatures	(SST;	June	through	August)	can	vary	from	as	
high	as	30°C	off	of	Cape	Hatteras	(35°N)	and	in	the	Gulf	Stream	to	as	
low	as	8°C	in	the	Northeast	Channel	south	of	Nova	Scotia,	Canada	
(42°N).	Water	 temperatures	within	 this	 region	 can	 show	dramatic	
within‐year	 variability;	 for	 example,	 in	 2015,	 water	 temperatures	
in	the	Northeast	Channel	varied	from	approximately	1°C	in	April	to	
21°C	in	August.

2.2 | Pelagic longline fishery

The	US	Atlantic	pelagic	 longline	 fishery	primarily	 targets	 sword-
fish	(Xiphias gladius),	yellowfin	tuna	(Thunnus albacares)	and	bigeye	
tuna	 (Thunnus obesus),	 with	 secondary	 targets	 of	 albacore	 tuna	
(Thunnus alalunga)	and	pelagic	sharks.	While	longline	gear	can	be	

altered	to	target	different	species,	such	as	by	varying	the	depth	of	
the	set,	the	timing	of	the	set,	the	number	of	hooks	and	the	spacing	
of	hooks,	multiple	species	are	typically	caught	in	pelagic	longline	
sets.	Swordfish	feed	in	near‐surface	waters	at	night,	and	thus,	sets	
targeting	 swordfish	 are	 typically	 deployed	 closer	 to	 the	 surface	
and	at	night,	while	sets	targeting	tunas	are	typically	set	deeper	in	
the	water	column	during	the	day	(NMFS,	2006).	Longline	vessels	
primarily	use	Atlantic	mackerel	 (Scomber scombrus)	or	squid	 (Illex 
sp.)	for	bait,	which	is	typically	stored	frozen	and	then	thawed	prior	
to	 use	 (Beerkircher,	 Lee,	 Brown,	 &	 Abercrombie,	 2002;	 Keene,	
Beerkircher,	&	Lee,	2007).	Pilot	whales	depredate	both	bait	 and	
catch	 from	 longlines,	 and	bycatch	 in	 the	pelagic	 longline	 fishery	
is	 the	 primary	 source	 of	 human‐caused	M/SI	 for	 the	Northwest	
Atlantic	 stock	 of	 short‐finned	 pilot	 whales	 (Hayes	 et	 al.,	 2017).	
Stepanuk	et	 al.	 (2018)	 found	 that	 seasonal	 variability	 in	 longline	
effort	 relative	 to	 the	 1,000‐m	 isobath	 influenced	 seasonal	 pat-
terns	in	pilot	whale‐longline	overlap,	which	was	strongly	and	sig-
nificantly	correlated	with	 rates	of	pilot	whale	bycatch.	However,	
the	role	of	dynamic	oceanography	 in	driving	patterns	of	bycatch	
requires	further	attention.

2.3 | Telemetry data

We	 developed	 predictive	 habitat	 models	 for	 short‐finned	 pilot	
whales	 using	 data	 from	 35	 satellite	 tags	 deployed	 in	 waters	 off	
Cape	 Hatteras,	 North	 Carolina,	 in	 2014	 and	 2015.	 Satellite	 tags	
provided	location	data	for	tracked	pilot	whales	and	did	not	provide	
environmental	 data.	 Tagging	 efforts	were	 conducted	 independent	

F I G U R E  2  Environmental	parameters	
in	the	study	area	used	to	develop	the	
short‐finned	pilot	whale	habitat	model.	
The	Mid‐Atlantic	Bight	and	Northeast	
Coast	(MAB	and	NEC)	and	the	South	
Atlantic	Bight	(SAB)	regions	are	shown	
in	panel	d.	The	green	star	indicates	the	
location	of	tag	deployments	off	of	Cape	
Hatteras,	North	Carolina.	Data	are	shown	
for	3	September	2014.	SST,	Sea	surface	
temperature;	SLA,	Sea	level	anomaly
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of	 fishing	 and	 observer	 effort.	 We	 used	 27	 SPOT5	 and	 8	 Mk10	
Wildlife	 Computer	 satellite	 tags,	 all	 in	 the	 Low	 Impact	 Minimally	
Percutaneous	External‐electronics	Transmitter	(LIMPET)	configura-
tion,	 attached	with	 two	 titanium	 darts	with	 backward	 facing	 pet-
als.	Tags	were	remotely	deployed	into	the	dorsal	fin	or	base	of	the	
dorsal	fin	of	short‐finned	pilot	whales	using	a	pneumatic	projector	
(Andrews,	Pitman,	&	Ballance,	2008;	Baird	et	al.,	2010).	To	provide	
data	on	habitat	use	over	broad	spatial	and	temporal	scales,	SPOT5	
tags	were	programmed	to	collect	data	daily	for	the	first	60	days	of	
the	 deployment,	 every	 third	 day	 for	 the	 subsequent	 21	days	 and	
every	 ninth	 day	 for	 the	 remainder	 of	 the	 deployment.	Mk10	 tags	
were	programmed	to	transmit	data	daily	for	the	first	20	days	of	the	
deployment,	every	third	day	for	the	subsequent	30	days	and	every	
ninth	 day	 for	 the	 remainder	 of	 the	 deployment.	We	 used	 all	 data	
from	 tag	 transmissions	 through	 April	 2016;	 resulting	 tag	 deploy-
ments	ranged	from	6	to	198	days	(mean	68	days),	and	tagged	whales	
travelled	 43–1,312	km	 (mean	 357	km)	 from	 their	 tagging	 location	
during	 these	 periods.	 Tag	 data	 were	 processed	 with	 the	 Douglas	
Argos‐Filter	 to	 remove	 erroneous	 location	 estimates	 (Douglas	 et	
al.,	2012;	user‐defined	settings:	min.	rate	=	15,	max‐redun	=	3,	rate-
coef	=	25,	KeepLC	=	2)	and	resampled	to	a	12‐hr	time	frame	to	en-
sure	 consistent	 time	 steps	 between	 all	 observations.	 Resampling	
was	conducted	using	 the	minimum	covariance	determinant	 (MCD)	
in	the	MASS	library	(version	7.3‐45)	of	the	r	statistical	package	(ver-
sion	3.3.2)	to	provide	a	robust	estimate	of	location	at	each	time	step	
that	is	not	strongly	influenced	by	outliers	occurring	due	to	the	spatial	
resolution	of	telemetry	data.	When	fewer	than	four	locations	were	
available	within	a	time	window,	MCD	cannot	be	computed	and	the	
coordinate‐wise	median	was	used	(Thorne	et	al.,	2015).

2.4 | Environmental data

Our	 initial	 data	 exploration	 highlighted	 the	 importance	 of	 depth,	
slope	 and	 proximity	 to	 the	 shelf	 break	 as	 important	 factors	 influ-
encing	 the	movements	 of	 short‐finned	 pilot	whales,	 and	 previous	
studies	suggested	that	water	temperature,	thermal	fronts	and	Gulf	
Stream	features	are	also	important	variables	driving	the	habitat	use	
of	this	species	 (Fullard	et	al.,	2000;	Thorne	et	al.,	2017;	Waring	et	
al.,	2015).	We	assessed	bathymetric	variables	using	GEBCO	bathym-
etric	grids	(resolution	1	km;	http://www.gebco.net/data_and_prod-
ucts/gridded_bathymetry_data/)	 and	used	 the	200‐m	 isobath	 as	 a	
proxy	for	the	location	of	the	continental	shelf	break.	Previous	stud-
ies	suggested	the	importance	of	steep	bathymetric	gradients	within	
the	diving	range	of	pilot	whales	(depths	of	less	than	1,200	m;	Quick	
et	al.,	2017),	but	bathymetric	gradients	beyond	this	depth	range	did	
not	appear	to	influence	pilot	whale	distribution	(Thorne	et	al.,	2017).	
We	therefore	assumed	that	slopes	occurring	at	depths	of	more	than	
1,200	m	would	not	 influence	pilot	whale	habitat	use.	We	assessed	
the	effect	of	bathymetric	slope	within	the	pilot	whale	diving	range	
using	 the	 neighbourhood	 statistics	 tool	 (focal	 statistics)	 in	ArcGIS	
to	 assess	 change	 in	 depth	 over	 a	 5	×	5	 cell	 grid;	 slopes	 occurring	
at	 depths	 of	 greater	 than	 1,200	m	were	 assigned	 a	 value	 of	 zero	
(Figure	2c).	We	used	daily	 Level	 4	Group	 for	High	Resolution	Sea	

Surface	Temperature	(GHRSST)	grids	with	a	spatial	resolution	of	0.01	
degrees	 (https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN‐
L4UHfnd‐GLOB‐G1SST),	available	 from	June	2010	 to	 the	present,	
to	examine	water	temperature	and	thermal	fronts.	We	identified	SST	
fronts	using	the	Cayula–Cornillon	edge	detection	tool	in	the	Marine	
Geospatial	Ecology	Tools	(MGET)	for	ArcGIS	(front	detection	thresh-
old	of	0.5°C;	Cayula	&	Cornillon,	1992,	Roberts,	Best,	Dunn,	Treml,	&	
Halpin,	2010).	We	used	daily	grids	of	AVISO	mean	sea	level	anoma-
lies	(SLA)	 in	metres,	calculated	as	differences	in	sea	level	from	the	
long‐term	 mean	 (http://www.aviso.altimetry.fr/en/data/products/
sea‐surface‐height‐products.html),	downloaded	via	MGET.

2.5 | Fisheries observer data

We	 obtained	 data	 from	 the	 Pelagic	 Observer	 Program	 (POP)	 run	
by	the	NMFS,	which	places	 independent	observers	aboard	pelagic	
longline	vessels	to	record	bycatch	and	detailed	set‐level	data	of	each	
longline	set	(e.g.,	set	and	haul	locations,	bait	type,	number	of	hooks	
deployed	and	mainline	 length).	The	POP	was	 initiated	 in	1992	and	
on	average	provides	coverage	of	4.8%	of	all	longline	sets	each	year	
(Keene	et	al.,	2007).	The	methods	used	to	represent	longline	effort	
in	space	(e.g.,	points,	centroids,	polygons)	can	impact	results	of	spa-
tial	analyses,	and	polygons	created	from	locations	at	the	beginning	
of	the	set,	end	of	the	set,	beginning	of	the	haulback	and	end	of	the	
haulback	provide	the	most	accurate	means	of	representing	longline	
effort	(Dunn,	Kot,	&	Halpin,	2008).	We	therefore	used	the	polygon	
method,	creating	a	separate	polygon	for	each	longline	set,	and	used	
mean	values	of	environmental	data	from	within	the	polygon	to	pre-
dict	the	probability	of	pilot	whale	occurrence	at	each	set	(pilot	whale	
models	described	below).	We	then	compared	the	predicted	occur-
rence	 of	 pilot	whales	with	 observed	 rates	 of	 pilot	whale	 bycatch,	
defined	 as	 bycatch	 per	 unit	 effort	 (BPUE),	 or	 the	 number	 of	 pilot	
whales	caught	per	longline	set.

2.6 | Predictive models of pilot whale occurrence

We	used	 a	 binary	modelling	 approach	 by	 comparing	 environmen-
tal	data	at	 locations	of	pilot	whale	presence	 (from	satellite	 tracks)	
with	locations	of	pseudo‐absences.	We	generated	pseudo‐absences	
for	each	pilot	whale	track	from	ten	temporally	matched	correlated	
random	 walks	 (CRWs)	 using	 the	 approach	 of	 Hazen	 et	 al.	 (2016;	
Supporting	 Information	Figure	 S1).	 Each	CRW	had	 the	 same	 start	
time,	start	 location	and	duration	as	the	pilot	whale	tracks,	and	for	
each	12‐hr	time	step	of	the	pilot	whale	tracks,	we	randomly	selected	
turning	angles	and	step	distances	from	the	distributions	observed	in	
the	 telemetry	data.	The	selection	of	appropriate	pseudo‐absences	
has	 important	effects	on	model	performance,	and	we	constrained	
our	CRWs	using	 a	 flag	 value	 to	 reflect	 the	 fit	 of	CRWs	with	 pilot	
whale	 tracks	 based	 on	 overall	 direction	 and	 distance	 travelled	
(Hazen	et	al.,	2016;	Willis‐Norton	et	al.,	2015)	as	follows:

Flag=2∗
(

distancepilotwhale −distanceCRW

distancepilotwhale

)

+

( anglepilotwhale − angleCRW )∕90

http://www.gebco.net/data_and_products/gridded_bathymetry_data/
http://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST
https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products.html
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products.html
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Resulting	flag	values	ranged	from	0	to	5,	and	we	discarded	CRWs	
with	flag	values	in	the	upper	quartile	and	those	that	crossed	land	in	
order	to	obtain	pseudo‐absences	that	represented	accessible	areas	
for	pilot	whales	(Hazen	et	al.,	2016).	The	total	number	of	presence	
and	 pseudo‐absence	 locations	 used	 in	 the	 model	 was	 2,690	 and	
26,900,	respectively.

We	 sampled	 environmental	 variables	 at	 each	 track	 point	 and	
pseudo‐absence	 point,	 respectively.	 We	 modelled	 the	 probability	
of	pilot	whale	occurrence	as	a	function	of	environmental	variables	
using	mixed‐effects	generalized	additive	models	(GAMMs),	including	
a	random	effect	for	individual	whales	in	order	to	account	for	correla-
tion	between	points	on	an	individual	pilot	whale	track	(Gillies	et	al.,	
2006;	Shillinger	et	al.,	2011;	Willis‐Norton	et	al.,	2015).	We	ran	the	
GAMMs	using	the	gamm4	package	(version	0.2‐5)	in	the	r	statistical	
package	(version	3.3.2)	using	cubic	spline	smoothers	with	4	or	fewer	
degrees	 of	 freedom	 to	 prevent	 over‐fitting	 and	 performed	model	
selection	 by	minimizing	 UBRE	 (Wood,	 2004).	We	 did	 not	 include	
strongly	 correlated	 environmental	 variables	 (Pearson's	 correlation	
coefficient	>	0.4),	 such	 as	 depth	 and	 proximity	 to	 the	 shelf	 break,	
within	the	same	model.	The	final	model	included	the	following	vari-
ables:	Distance	to	shelf	break,	SST,	SLA,	slope	and	distance	to	SST	
fronts.

We	assessed	the	final	model	using	10‐fold	cross‐validation	and	
examined	model	performance	using	R2	 values,	 the	 area	under	 the	
curve	(AUC)	of	the	receiver	operating	characteristic	(ROC)	plot,	and	
model	sensitivity	and	specificity.	AUC	values	range	between	0	and	
1,	with	a	value	of	1	representing	a	perfect	fit,	values	higher	than	0.9	
indicating	an	excellent	fit,	values	of	0.80–0.90	signifying	good	model	
fit	and	values	of	0.70–0.80	representing	a	fair	fit	(Swets,	1988).	For	
our	model,	 sensitivity	 describes	 the	 probability	 that	 a	 pilot	whale	
occurrence	would	be	correctly	identified	as	such	by	the	model	(the	
true	positive	rate),	while	specificity	describes	the	proportion	of	pilot	
whale	 absences	 that	 are	 correctly	 identified	 by	 the	model	 as	 ab-
sences	 (the	 true	negative	 rate).	During	cross‐validation,	data	were	
randomly	partitioned	 into	 ten	data	equal	parts;	nine	were	used	 to	
build	and	fit	the	models,	while	the	last	was	used	as	the	test	data	set	
to	assess	model	performance.	This	process	was	repeated	ten	times	
so	that	each	of	the	ten	partitions	are	used	once	to	test	the	model,	
and	results	from	the	10‐fold	were	averaged	to	examine	R2	and	AUC	
values,	 model	 specificity	 and	 sensitivity.	 To	 examine	 spatial	 vari-
ability	in	predicted	pilot	whale	habitat	through	time,	we	generated	
seasonal	means	as	means	of	daily	predictions	produced	from	daily	
environmental	conditions.

2.7 | Assessing predictive models using fisheries 
observer data

We	 predicted	 the	 probability	 of	 pilot	 whale	 occurrence	 for	 each	
longline	set	using	environmental	data	as	described	above	for	monthly	
habitat	predictions.	This	analysis	 focused	on	the	period	from	June	
2010	 to	December	 2015	 for	which	we	 had	 concurrent	 high‐reso-
lution	 SST	 data	 and	 POP	 observations	 of	 longline	 sets	 (n	=	1,474	
observed	 sets).	 Pilot	whale	 bycatch	 occurs	 infrequently	 (116	 pilot	

whales	were	caught	in	observed	longline	sets,	giving	a	mean	bycatch	
rate	of	0.079	pilot	whales	per	longline	set	during	the	study	period),	
and	thus,	bycatch	 is	best	quantified	by	examining	rates	of	bycatch	
across	 multiple	 longline	 sets.	We	 used	 this	 approach	 to	 evaluate	
whether	the	habitat	model	could	be	used	to	predict	pilot	whale	by-
catch	in	the	longline	fishery	in	four	ways.	First,	we	quantified	BPUE	
within	ten	classes	of	predicted	pilot	whale	occurrence	probabilities	
generated	 by	 the	 model	 (probabilities	 of	 0–0.1,	 0.1–0.2,	 0.2–0.3,	
0.3–0.4,	0.4–0.5,	0.5–0.6,	0.6–0.7,	0.7–0.8,	0.8–0.9	and	0.9–1)	and	
examined	 correlations	 between	predicted	 probabilities	 and	BPUE.	
Second,	we	assessed	differences	in	predicted	pilot	whale	occurrence	
probabilities	for	sets	that	caught	different	numbers	of	pilot	whales	
(sets	with	no	pilot	whale	bycatch	vs.	sets	in	which	bycatch	was	ob-
served;	 and	comparisons	of	 sets	with	1	vs.	2	pilot	whales	 caught)	
using	Wilcoxon	rank	sum	tests.	Thirdly,	we	examined	relationships	
between	monthly	BPUE	and	predicted	probabilities	of	pilot	whale	
occurrence	for	observed	sets	during	that	month.	All	analyses	were	
limited	to	classes	and	time	periods	with	at	least	five	observed	sets.	
Lastly,	we	compared	spatial	predictions	of	 the	model	during	a	pe-
riod	of	high	BPUE	with	those	from	a	period	of	low	BPUE	when	fish-
ing	effort	covered	a	similar	spatial	extent	to	assess	whether	model	
could	be	used	to	predict	 temporal	periods	of	high	bycatch,	and	to	
shed	 light	on	why	bycatch	was	 so	high	during	 these	 time	periods.	
Specifically,	 we	 compared	model	 predictions	 for	December	 2015,	
when	pilot	whale	BPUE	was	particularly	high	(Stepanuk	et	al.,	2018;	
0.32	pilot	whales	per	set),	with	predictions	during	the	same	month	
in	previous	years,	when	pilot	whale	BPUE	occurred	at	more	typical	
levels	(0.077	pilot	whales	per	set	during	December	2010–2014).

To	examine	whether	predictive	modelling	using	dynamic	habitat	
variables	could	be	used	to	identify	high‐risk	areas	for	pilot	whale	by-
catch	more	precisely	than	static	management	approaches,	we	com-
pared	the	area	covered	by	static	approach	discussed	by	Stepanuk	et	
al.	(2018)	(the	region	15	km	inshore	of	the	1,000‐m	isobath)	with	the	
area	predicted	by	our	pilot	whale	habitat	model	 seasonally	within	
the	 MAB	 and	 NEC	 regions	 (Figure	 2d).	 We	 examined	 predicted	
probabilities	of	pilot	whale	occurrence	at	 the	 time	and	 location	of	
longline	sets,	and	for	illustration	purposes,	we	considered	high‐risk	
areas	 for	 pilot	 whale	 bycatch	 to	 be	 those	 occurring	 at	 probabili-
ties	 above	 the	 lower	 95%	 confidence	 interval	 (CI)	 of	 longline	 sets	
in	 which	 pilot	 whale	 bycatch	was	 observed.	 Occasionally,	 regions	
within	Gulf	Stream	rings	in	distant	offshore	waters	were	identified	
as	 likely	pilot	whale	habitat	using	this	approach	(Figure	4).	As	pilot	
whale	bycatch	occurs	 in	close	proximity	 to	the	shelf	break	and	no	
bycatch	was	observed	within	offshore	Gulf	Stream	waters	(Garrison,	
2007;	Stepanuk	et	al.,	2018),	areas	within	Gulf	Stream	rings	in	distant	
offshore	waters	were	not	considered	to	be	high‐risk	areas	for	pilot	
whale	bycatch.

3  | RESULTS

GAMM	results	and	k‐folds	cross‐validation	showed	that	the	model	
performed	well,	with	 a	mean	proportion	of	 deviance	 explained	of	
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42.57	for	the	10‐folds	(Table	1).	Comparisons	between	training	and	
test	data	sets	 indicated	a	high	 level	of	agreement	with	model	pre-
dictions,	with	a	mean	AUC	of	the	receiver	operator	curve	of	0.92,	
reflecting	an	excellent	fit	(Hosmer	&	Lemeshow,	2000).	Model	sen-
sitivity	 (mean	of	0.95)	was	higher	 than	model	 specificity	 (mean	of	
0.63),	indicating	that	the	model	performed	well	in	predicting	where	
pilot	whales	occurred,	but	occasionally	predicted	presences	where	
none	were	 observed.	Given	 that	 our	model	was	 built	 using	 a	 lim-
ited	number	of	tagged	whales,	and	that	there	are	thousands	of	more	
whales	 than	 those	 tracked	 in	 this	 study,	 it	 follows	 that	 the	model	
would	predict	presences	where	there	were	no	observations	from	te-
lemetry	data.	Our	model	demonstrated	that	pilot	whales	occurred	in	
regions	in	close	proximity	to	thermal	fronts	and	were	associated	with	
warm	SST,	intermediate	bathymetric	slopes	and	both	extreme	nega-
tive	and	extreme	positive	values	of	SLA,	representing	dynamic	re-
gions	such	as	Gulf	Stream	meanders	and	rings	(Figure	3).	Pilot	whales	
primarily	occurred	in	close	proximity	to	the	shelf	break,	but	a	small	
number	of	tagged	pilot	whales	also	followed	Gulf	Stream	waters	into	
offshore	waters	 for	part	or	 all	of	 their	 track	 (Thorne	et	 al.,	 2017).	
While	in	Gulf	Stream	waters,	pilot	whale	tracks	often	paralleled	the	
shelf	 break	 at	 distances	 of	 250–350	km	 (Supporting	 Information	
Figure	S2),	leading	to	an	increase	in	pilot	whale	occurrences	relative	
to	pseudo‐absence	locations	at	this	distance.

Seasonal	 spatial	 predictions	 highlighted	 shifts	 in	 pilot	 whale	
habitat	throughout	the	year.	Most	pilot	whales	occurred	in	regions	
of	medium	to	high	bathymetric	relief	at	close	proximity	to	the	shelf	
break,	but	their	probabilities	of	occurrence	shifted	with	dynamic	
oceanographic	variables	(SST,	SLA,	thermal	fronts).	High	probabil-
ities	of	pilot	whale	occurrence	were	restricted	to	southern	regions	
of	 the	MAB	during	winter	 but	moved	 north	 during	 late	 summer	
and	early	fall	(Figure	4).	The	northernmost	observation	of	a	satel-
lite‐tagged	short‐finned	pilot	whale	occurred	in	August	along	the	
shelf	 break	 in	 proximity	 to	 the	 northern	 flank	 of	George's	 Bank	
(Thorne	et	al.,	2017).	This	observation	matched	well	with	our	spa-
tial	prediction	of	pilot	whale	habitat	in	the	late	summer/	early	fall,	
in	which	the	northernmost	location	of	high	predicted	probabilities	
of	pilot	whale	occurrence	was	in	close	proximity	to	Georges	Bank	
(Figure	4).	At	daily	and	weekly	time‐scales,	Gulf	Stream	rings	and	

the	 intrusion	 of	 Gulf	 Stream	waters	 into	 shelf	 break	 regions	 in-
creased	the	probability	of	pilot	whale	occurrence	in	these	waters	
(Supporting	Information	Figure	S3).

Predicted	probabilities	of	pilot	whale	occurrence	were	strongly	
and	 significantly	 correlated	with	BPUE	 for	 observed	 longline	 sets	
(Pearson's	correlation	coefficient	=	0.84,	p‐value	=	9.2	×	10−3).	This	
was	also	true	on	a	monthly	time‐scale;	months	with	higher	observed	
values	of	BPUE	had	higher	predicted	probabilities	of	pilot	whale	oc-
currence	 (Pearson's	 correlation	 coefficient	=	0.36,	 p	=	1.2	×	10−2).	
Observed	 longline	 sets	 with	 observed	 pilot	 whale	 bycatch	 had	

TA B L E  1  Summary	of	mixed‐effects	generalized	additive	model	of	pilot	whale	occurrence

Estimate Std. error z Value Pr(>|z|) p‐Value R2
Prop. Dev. 
explained AIC AUC Sensitivity Specificity

(Intercept) −3.89 0.15 −26.44 <2E−16 0.38 42.57 9,383 0.92 0.95 0.63

Smooth terms edf Ref.df Chi.sq p‐Value

Distance	to	
shelf	break

2.99 3 684.82 <2E−16

SST 2.73 3 66.08 1.11E−05

Distance	to	
SST	front

2.94 3 1,813.37 <2E−16

Slope 2.74 3 94.75 1.58E−04

SLA 2.52 3 175.90 3.58E−03

Note.	Values	represent	mean	values	for	each	of	the	10‐folds.

F I G U R E  3  Mixed‐effects	generalized	additive	model	plots	of	
pilot	whale	presence/absence	relative	to	environmental	variables	in	
the	Northwest	Atlantic.	Shaded	areas	represent	standard	error
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significantly	higher	predicted	probabilities	of	pilot	whale	occurrence	
than	those	in	which	no	pilot	whale	bycatch	was	observed	(Wilcoxon	
rank	 sum	 test,	 p	=	2.7	×	10−9).	 Similarly,	 observed	 sets	 in	 which	 a	
single	 pilot	 whale	 was	 caught	 had	 significantly	 lower	 predicted	
probabilities	 than	 those	 in	 which	 two	 pilot	 whales	 were	 caught	
(Wilcoxon	rank	sum	test,	p	=	3.8	×	10−2;	Figure	5).	During	December	
2015,	 when	 BPUE	 was	 unusually	 high,	 predicted	 probabilities	 of	
pilot	whale	occurrence	for	observed	longline	sets	were	significantly	
higher	than	those	in	December	2010–2014,	when	BPUE	occurred	at	
more	typical	rates	(Wilcoxon	rank	sum	test,	p	=	1.5	×	10−7;	Figure	6).	
While	the	locations	of	individual	 longline	sets	could	not	be	shown	
for	 confidentiality	 purposes,	 the	 spatial	 distribution	 of	 observed	
longline	 sets	was	generally	 similar	between	years,	 as	 reflected	by	
core	fishing	areas	represented	by	the	75%	kernel	density	estimate	
(KDE)	of	observed	longline	sets.	Higher	SST	values	at	the	location	
of	observed	sets	during	December	2015	(Wilcoxon	rank	sum	test,	
p	=	7.9	×	10−10)	were	associated	with	higher	predicted	probabilities	
of	pilot	whale	occurrence	at	the	locations	of	observed	longline	sets	
(Figures	6	and	7).

The	lower	95%	CI	of	model	probabilities	for	longline	sets	in	which	
pilot	whale	bycatch	was	observed	was	0.34.	The	areas	 in	 the	MAB	
and	NEC	regions	occurring	above	this	threshold	varied	seasonally	and	
were	as	follows	for	each	of	our	four	seasonal	predictions	(Figure	4):	
2,673	km2	for	February	to	April	(note	that	an	additional	3,156	km2 oc-
curred	within	Gulf	Stream	cold‐core	rings	in	distant	offshore	waters	
and	were	not	included	in	this	estimate;	Figure	4);	5,483	km2	for	May	to	
July;	9,832	km2	for	August	to	October;	and	2,582	km2	for	November	
to	 January.	 By	 comparison,	 the	 area	 in	 the	MAB	 and	NEC	 regions	
15	km	inshore	of	the	1,000‐m	isobath,	which	Stepanuk	et	al.	(2018)	
found	to	have	high	rates	of	pilot	whale	bycatch,	was	21,427	km2.

4  | DISCUSSION

SDMs	 provide	 a	 promising	 tool	 for	 predicting	 when	 and	 where	
threats	 to	protected	species	are	 likely	 to	occur,	 information	which	
is	critical	to	effective	conservation	and	management	(Becker	et	al.,	
2012;	Briscoe	et	al.,	2018;	Hazen	et	al.,	2016,	2018;	Willis‐Norton	

F I G U R E  4  Seasonal	spatial	predictions	of	short‐finned	pilot	whale	occurrence	in	the	Northwest	Atlantic.	Seasonal	means	were	calculated	
as	means	of	daily	predictions	produced	from	daily	environmental	conditions
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et	 al.,	 2015).	 Assessing	 model	 performance	 using	 independent	
data	 is	 necessary	 to	 test	whether	 the	model	 is	 generalizable,	 and	
SDMs	should	be	evaluated	using	 independent	data	whenever	pos-
sible	(Chatfield,	1995;	Fielding	&	Bell,	1997;	Guisan	&	Zimmermann,	
2000;	Manel,	Dias,	&	Ormerod,	1999;	Olden,	Jackson,	&	Peres‐Neto,	
2002;	Pearce	&	Ferrier,	2000).	However,	 in	practice,	model	valida-
tion	is	frequently	conducted	using	the	same	data	to	construct	and	
test	 the	 model,	 which	 can	 bias	 estimates	 of	 model	 performance	
(Araújo,	Pearson,	Thuiller,	&	Erhard,	2005;	Chatfield,	1995;	Pearce	
&	Ferrier,	2000;	Torres	et	al.,	2015).	For	models	with	management	
applications,	it	is	particularly	important	that	model	performance	be	
assessed	rigorously	using	independent	data	to	ensure	that	model	re-
sults	can	be	applied	appropriately	to	a	given	management	scenario	
before	habitat	models	are	 integrated	 into	decision‐making.	For	ex-
ample,	marine	predators	can	show	differences	in	habitat	preferences	
between	regions,	and	extrapolating	SDMs	over	broad	spatial	extents	
outside	of	the	calibration	area	can	misinform	bycatch	mitigation	ef-
forts	 (Torres	 et	 al.,	 2015).	 Further,	 efforts	 to	 decrease	 bycatch	 of	
cetaceans	that	depredate	fishing	gear	should	verify	that	model	re-
sults	can	be	applied	to	accurately	predict	where	and	when	bycatch	
is	 likely	 to	 occur.	 Fishing	 vessels	 can	 actively	 attract	 depredating	
predators,	and	social	learning	can	influence	patterns	of	depredation	
in	 cetaceans;	 patterns	 of	 depredation	might	 therefore	 differ	 from	
typical	habitat	use	(Gilman	et	al.,	2007;	Kock	et	al.,	2006;	Schakner	
et	al.,	2014;	Thode	et	al.,	2007).	Thus,	studies	using	SDMs	to	indi-
cate	 the	risk	of	bycatch	should	also	assess	how	model	predictions	
relate	 to	observed	patterns	of	bycatch	by	using	 independent	data	
from	 fisheries	 observers	when	 available	 to	 validate	 the	model.	 In	
the	present	study,	we	developed	a	predictive	model	of	pilot	whale	

habitat	use	and	tested	 its	ability	to	predict	pilot	whale	occurrence	
using	both	cross‐validation	and	independent	data	from	government	
fisheries	 observers.	Our	 predictive	 habitat	model	 for	 short‐finned	
pilot	whales	was	not	only	effective	in	predicting	their	occurrence,	as	
assessed	using	cross‐validation,	but	model	predictions	were	strongly	
and	significantly	correlated	with	observations	of	pilot	whale	bycatch.	
This	indicates	that	pilot	whale	bycatch	occurred	in	times	and	places	
identified	as	pilot	whale	habitat,	and	suggests	that	in	our	study	area,	
areas	in	which	depredation	occurred	did	not	differ	from	typical	pilot	
whale	habitat	use.

Due	to	the	dynamic	nature	of	marine	environments,	being	able	
to	predict	species	distributions	in	both	space	and	time	is	necessary	
to	understanding	and	mitigating	threats	to	marine	species	(Hazen	et	
al.,	2013,	2016,	2018;	Howell	et	al.,	2008;	Willis‐Norton	et	al.,	2015).	

F I G U R E  5  Predicted	probabilities	of	short‐finned	pilot	whale	
occurrence	for	longline	sets	observed	by	fisheries	observers	
relative	to	the	number	of	pilot	whales	caught	in	observed	longline	
sets	in	the	Mid‐Atlantic	Bight	(MAB)	and	Northeast	Coast	(NEC).	
*indicates	significance	at	the	p	<	0.05	level,	***indicates	significance	
at	the	p < 0.001 level

F I G U R E  6  Predicted	probability	of	short‐finned	pilot	whale	
occurrence	and	observed	SST	for	all	longline	sets	observed	
by	fisheries	observers	in	December	2015	and	in	December	
2010–2014,	respectively.	Rates	of	pilot	whale	bycatch	per	unit	
effort	(BPUE)	were	considerably	higher	in	December	2015	than	
in	December	2010‐2014	(0.32	pilot	whales	per	set	in	December	
2015	vs.	0.077	pilot	whales	per	set	during	December	2010–2014).	
***indicates	significance	at	the	p < 0.001 level.
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We	found	that	dynamic	oceanographic	variables	(SST,	thermal	fronts,	
SLA)	were	important	factors	driving	the	habitat	of	short‐finned	pilot	
whales,	 so	predicted	spatial	distributions	of	 this	 species	showed	a	
great	deal	of	variability	through	time.	Dynamic	variables	were	also	
useful	in	understanding	observed	temporal	patterns	of	bycatch;	for	
example,	spatial	predictions	from	our	model	and	satellite	SST	images	
suggest	that	higher	SST	 in	the	area	fished	played	a	role	 in	the	un-
usually	high	rates	of	BPUE	observed	in	December	2015	(Stepanuk	
et	 al.,	 2018;	 Figures	 6	 and	 7).	 Short‐finned	 pilot	whales	 feed	 pri-
marily	on	mesopelagic	and	bathypelagic	squid	and	fish,	ectothermic	
prey	which	show	distributional	shifts	in	association	with	changes	in	
temperature	 (Funes‐Rodrigues,	 Hinojosa‐Medina,	 Aceves‐Medina,	
Jimenez‐Rosenberg,	 &	 Jesus	 Bautista‐Romero,	 2006;	 Hsieh,	 Kim,	
Watson,	Lorenzo,	&	Sugihara,	2009;	Jensen,	Perez,	Johnson,	Soto,	&	
Madsen,	2011;	Mintzer	et	al.,	2008).	In	addition,	thermal	fronts	and	
mesoscale	 oceanographic	 features	 such	 as	Gulf	 Stream	meanders	

and	 rings	may	provide	enhanced	 foraging	opportunities	 for	 forag-
ing	marine	predators	(Dragon,	Monestiez,	Bar‐Hen,	&	Guinet,	2010;	
Rodhouse	et	al.,	1996;	Scales	et	al.,	2014).

This	case	study	demonstrated	that	incorporating	dynamic	ocean-
ographic	 variables	 into	 SDMs	 can	 allow	 times	 and	 locations	with	 a	
high	risk	of	pilot	whale	bycatch	to	be	 identified	more	precisely	 than	
approaches	 relying	 upon	 static	 habitat	 factors	 alone.	 The	 high‐risk	
areas	 for	 pilot	whale	 bycatch	 predicted	 by	 our	model	were	 consid-
erably	smaller	 than	 those	 identified	using	static	variables	alone,	and	
the	extent	 covered	by	 the	high‐risk	 areas	 varied	 seasonally.	 In	both	
February	 through	 April	 and	 November	 through	 January,	 predicted	
high‐risk	areas	for	pilot	whale	bycatch	were	constrained	spatially,	cov-
ering	12.5%	and	12.0%,	respectively,	of	the	area	identified	from	static	
habitat	features	(i.e.	the	area	15	km	inshore	of	the	1,000‐m	isobath).	
Predicted	high‐risk	areas	occurred	further	north	and	covered	a	broader	
area	from	May	through	October	due	to	warmer	SST	values	in	higher	

F I G U R E  7  Spatial	maps	of	SST	and	
predicted	probability	of	short‐finned	pilot	
whale	occurrence	relative	to	the	75%	
kernel	density	estimate	(KDE)	of	longline	
sets	observed	by	fisheries	observers	in	
December	2010–2014	in	comparison	
with	December	2015.	The	locations	
of	individual	longline	sets	could	not	be	
displayed	for	confidentiality	purposes
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latitudes	during	these	months,	 reaching	a	maximum	of	45.9%	of	the	
area	identified	using	the	static	approach	in	August	through	October.	
However,	it	is	important	to	note	that	particularly	in	winter	months,	the	
static	approach	examined	here	likely	overestimates	the	area	used	by	
fishers;	during	winter	months,	longline	fishing	effort	typically	occurs	in	
cooler	waters	than	pilot	whale	observations,	but	is	less	likely	to	occur	in	
the	northernmost	extent	of	the	MAB	and	NEC	(Stepanuk	et	al.	2018).

The	predictive	model	presented	here	 could	be	applied	 to	near	
real‐time	 satellite	 oceanographic	 data	 to	 produce	 “now‐casts”	 of	
high‐risk	 areas	 for	 pilot	 whale	 bycatch	 that	 could	 be	 used	 to	 de-
velop	management	strategies	to	reduce	pilot	whale‐longline	bycatch	
(sensu	Hobday	&	Hartmann,	2006,	Howell	et	al.,	2008,	Hazen	et	al.,	
2016).	In	other	regions,	near	real‐time	predictions	of	bycatch	species	
are	used	to	indicate	regions	that	fishers	should	avoid	in	order	to	de-
crease	bycatch,	or	are	used	by	managers	to	regulate	fisher	access	to	
spatial	management	zones	(Hobday,	Hartog,	Spillman,	&	Alves,	2011;	
Howell	et	al.,	2008).	Similarly,	spatial	predictions	of	the	risk	of	pilot	
whale	bycatch	in	the	MAB	and	SEC	could	be	posted	online	and	re-
vised	regularly	(daily)	based	on	the	most	recent	environmental	data	
to	provide	up‐to‐date	information	on	high‐risk	areas	that	should	be	
avoided.	These	predictions	could	be	useful	to	fishers,	allowing	them	
to	reduce	costs	of	lost	fish	and	bait,	while	providing	a	conservation	
benefit	by	decreasing	bycatch	of	a	protected	species.

In	the	future,	forecasts	of	oceanographic	variables	combined	with	
cetacean	habitat	models	could	provide	forecasts	of	cetacean	occur-
rence	 and	 could	 greatly	 improve	 planning	 and	 decision‐making	 for	
fishers	and	managers	 (Becker	et	al.,	2012,	2018).	The	utility	of	 this	
approach	has	been	demonstrated	in	other	applications;	for	example,	
seasonal	 forecasts	of	 environmental	 conditions	 are	used	 to	predict	
the	 distribution	 of	 southern	 Bluefin	 tuna	 (Thunnus maccoyii)	 in	 the	
Great	Australian	Bight	at	lead	times	of	up	to	2	months.	Forecasts	of	
tuna	distributions	are	provided	online	daily	and	are	used	by	 fishers	
in	making	operational	decisions,	such	as	when	and	where	to	 fish	 in	
order	to	catch	their	quota	more	efficiently	(Eveson,	Hobday,	Hartog,	
Spillman,	&	Rough,	2015;	Tommasi	et	al.,	2017).	Seasonal	forecasts	of	
cetacean	distributions	could	be	used	to	mitigate	threats,	such	as	by-
catch	or	ship	strikes	(Becker	et	al.,	2012;	Hazen	et	al.,	2016).	Seasonal	
forecasts	of	variables	such	as	SST	are	currently	available	at	lead	times	
of	up	to	6–9	months,	and	international	collaborative	efforts,	such	as	
the	World	Climate	Research	Program	 (WCRP)	S2S	experiment,	 aim	
to	improve	forecast	skill	on	subseasonal	to	seasonal	time‐scales.	As	
a	region	strongly	influenced	by	a	western	boundary	current	(the	Gulf	
Stream),	 the	model	skill	of	seasonal	SST	forecasts	 in	the	north‐east	
United	States	is	currently	low	(Stock	et	al.,	2015),	but	future	improve-
ments	 to	 seasonal	 forecasts	 could	provide	 important	opportunities	
for	predicting	and	managing	living	marine	resources.

Predictive	models	 are	 particularly	 useful	 for	 informing	 conser-
vation	and	management	for	species	whose	distributions	are	not	well	
understood;	by	understanding	how	environmental	conditions	influ-
ence	habitat	use,	predictions	can	be	made	in	times	and	places	where	
little	or	no	data	are	available	(Thorne	et	al.,	2012).	For	highly	mobile	
species	such	as	cetaceans,	observations	often	cannot	be	made	in	all	
habitats	or	time	periods	of	interest.	The	telemetry	data	we	used	to	

build	our	predictive	models	were	collected	during	2014	and	2015,	
and	further	satellite	tag	deployments	could	be	used	to	improve	the	
model	predictions	presented	here.	It	will	be	important	to	verify	that	
our	model	predictions	reflect	pilot	whale	habitat	use	over	a	broader	
time	period.	However,	our	model	predictions	showed	strong	agree-
ment	with	observations	of	bycatch	when	applied	to	POP	data	outside	
the	 tagging	period	 (2010–2015),	 suggesting	 that	 these	predictions	
are	accurate	when	extrapolated	to	other	time	frames.	Further,	our	
results	 highlight	 the	 importance	 of	 telemetry	 data	 in	 producing	
much‐needed	data	on	movement	and	habitat	use	for	species	such	as	
pilot	whales	that	are	otherwise	difficult	to	study.	Due	to	difficulties	
in	distinguishing	the	two	pilot	whale	species,	there	was	little	species‐
level	 information	 on	 pilot	whale	 habitat	 use	 in	 the	North	Atlantic	
prior	 to	our	studies,	hampering	our	understanding	of	 the	environ-
mental	factors	driving	the	distribution	of	this	species	that	could	be	
used	 to	mitigate	pilot	whale	bycatch.	 Telemetry	data	 can	be	used	
to	predict	the	detailed	response	of	species	to	dynamic	oceanogra-
phy,	 facilitating	 the	development	of	models	 that	predict	habitat	 in	
space	 and	 time,	 and	 are	 thus	 useful	 in	 conservation	 and	manage-
ment	(Hazen	et	al.,	2016).	In	the	absence	of	telemetry	data,	analyses	
of	pilot	whale	habitat	use	at	 the	 species	 level	would	be	 limited	 to	
observations	from	sightings	from	surveys	which	are	very	expensive	
and	difficult	to	acquire;	as	a	result,	it	would	take	a	long	time	to	ob-
tain	sufficient	data	to	build	models	with	a	strong	predictive	capacity.	
Thus,	 for	 species	 that	 are	 difficult	 to	 study	 at	 sea	 or	 are	 sparsely	
distributed,	telemetry	studies	are	a	powerful	means	of	assessing	the	
habitat	 use	 of	 populations	 facing	 significant	 anthropogenic	 threat	
and	allow	for	informative	predictive	models	to	be	developed.

While	 our	model	 performed	well	 in	 predicting	 pilot	whale	 by-
catch	 in	 the	 longline	 fishery	 in	 relation	 to	dynamic	oceanographic	
variables,	pilot	whale	occurrence	in	distant	Gulf	Stream	waters	was	
not	as	well	represented	by	the	model.	Tagged	pilot	whales	occasion-
ally	followed	Gulf	Stream	meanders	into	pelagic	waters	(Thorne	et	
al.,	2017),	though	the	vast	majority	of	telemetry	locations	for	short‐
finned	 pilot	 whales	 (>75%)	 in	 the	 present	 study	 occurred	 within	
10	km	of	the	shelf	break.	Longline	fishing	effort	is	focused	in	prox-
imity	to	the	shelf	break,	and	no	pilot	whale	bycatch	was	observed	
within	these	offshore	Gulf	Stream	waters	(Garrison,	2007;	Stepanuk	
et	al.,	2018).	Thus,	although	further	observations	of	pilot	whales	will	
be	useful	in	understanding	factors	driving	the	use	of	pelagic	waters,	
we	feel	that	our	model	predictions	in	nearshore	waters	were	appro-
priate	for	assessing	the	risk	of	bycatch	in	the	pelagic	longline	fishery.

In	 addition	 to	 dynamic	 oceanographic	 variables,	 bathymetric	
variables	were	strong	predictors	of	short‐finned	pilot	whale	hab-
itat.	Regions	with	steep	bathymetric	slopes	 in	close	proximity	to	
the	shelf	break	were	positively	associated	with	pilot	whale	occur-
rence,	 and	 rates	 of	 pilot	whale	 bycatch	 are	 known	 to	 be	 higher	
in	 proximity	 to	 the	 shelf	 break	 (Garrison,	 2007;	 Stepanuk	 et	 al.,	
2018).	The	shelf	break	region	may	provide	enhanced	foraging	op-
portunities	 for	pilot	whales	 as	 a	 result	 of	 increased	primary	 and	
secondary	productivity	at	the	shelf	break	and/or	due	to	the	pres-
ence	of	steep	slopes	which	may	provide	a	physical	barrier	that	fa-
cilitates	the	capture	of	prey	(Herman,	Sameoto,	&	Longhurst,	1981;	
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Munk,	Larsson,	Danielssen,	&	Moksness,	1995;	Sambrotto,	Mordy,	
Zeeman,	Stabeno,	&	Macklin,	2008;	Thorne	et	al.,	2017;	Young	et	
al.,	2001).	Tagged	short‐finned	pilot	whales	did	not	move	into	wa-
ters	of	the	South	Atlantic	Bight,	although	short‐finned	pilot	whales	
are	known	to	occur	in	more	southerly	waters	of	the	south‐eastern	
United	States.	Short‐finned	pilot	whales	occurring	north	of	Cape	
Hatteras	may	exhibit	a	foraging	specialization	that	influences	their	
habitat	use	and	leads	to	a	strong	association	with	bathymetric	gra-
dients	(Thorne	et	al.,	2017).	Our	model	did	not	predict	high	proba-
bilities	of	occurrence	in	these	more	southerly	waters,	where	steep	
bathymetric	gradients	are	 restricted	to	deeper	waters	 (>1,200	m	
depth),	providing	support	for	the	importance	of	steep	bathymetric	
gradients	to	short‐finned	pilot	whale	habitat	in	the	MAB	and	NEC	
regions	of	the	United	States.

Our	 results	 demonstrate	 that	 short‐finned	 pilot	whale	 occur-
rence	 in	 the	MAB	 and	NEC	 regions	 of	 the	United	 States	 can	 be	
predicted	using	a	small	number	of	readily	available	environmental	
parameters	and	that	our	predictive	habitat	model	performs	well	in	
predicting	bycatch	of	short‐finned	pilot	whales	in	the	pelagic	long-
line	fishery.	Combining	our	model	outputs	with	forecasted	or	near	
real‐time	oceanographic	data	could	provide	an	effective	means	of	
predicting	 regions	with	 a	 high	 risk	 of	 fisheries	 bycatch.	 Together	
with	advances	in	satellite	oceanography,	telemetry	data	provide	an	
important	source	of	data	for	creating	and	testing	predictive	habitat	
models	 that	 facilitate	 the	 development	 of	 adaptive	management	
strategies	to	mitigate	fisheries	bycatch	with	protected	species.

ACKNOWLEDG EMENTS

We	thank	the	many	people	involved	with	fieldwork	and	tag	deploy-
ment,	including	Heather	Foley,	Zach	Swaim	and	Danielle	Waples,	
as	well	as	Larry	Beerkircher	(NOAA)	and	the	many	dedicated	ob-
servers	 of	 the	 POP	 for	 the	 pelagic	 longline	 fishery.	 Funding	 for	
telemetry	studies	was	provided	by	the	Naval	Facilities	Engineering	
Command	Atlantic,	and	funding	for	the	analysis	of	telemetry	and	
POP	data	was	provided	by	the	National	Marine	Fisheries	Service	
(NMFS)	 through	 the	 Bycatch	 Reduction	 Engineering	 Program	
(Award	 NA15NMF4720372	 to	 L.	 Thorne).	 Tagging	 studies	 were	
authorized	 under	 NMFS	 permit	 #	 17086	 to	 Robin	 Baird.	 All	 re-
search	protocols	were	approved	by	the	Institutional	Animal	Care	
and	Use	Committee	at	the	Cascadia	Research	Collective.

DATA ACCE SSIBILIT Y

Short‐finned	pilot	whale	telemetry	tracks	are	available	in	Movebank	
(www.movebank.org),	under	the	identifier	“short‐finned	pilot	whales	
CRC	NW	Atlantic.”	Bathymetric	and	oceanographic	data	are	avail-
able	online	as	indicated	in	Section	2.

ORCID

Lesley H. Thorne  https://orcid.org/0000‐0002‐6297‐0091 

R E FE R E N C E S

Andrews,	 R.	D.,	 Pitman,	 R.	 L.,	 &	Ballance,	 L.	 T.	 (2008).	 Satellite	 track-
ing	reveals	distinct	movement	patterns	for	Type	B	and	Type	C	killer	
whales	in	the	southern	Ross	Sea,	Antarctica.	Polar Biology,	31,	1461–
1468.	https://doi.org/10.1007/s00300‐008‐0487‐z

Araújo,	 M.	 B.,	 Pearson,	 R.	 G.,	 Thuiller,	 W.,	 &	 Erhard,	 M.	 (2005).	
Validation	 of	 species–climate	 impact	 models	 under	 climate	
change.	 Global Change Biology,	 11,	 1504–1513.	 https://doi.
org/10.1111/j.1365‐2486.2005.01000.x

Baird,	R.	W.,	Abrams,	P.	A.,	&	Dill,	L.	M.	 (1992).	Possible	 indirect	 inter-
actions	 between	 transient	 and	 resident	 killer	 whales:	 Implications	
for	 the	 evolution	 of	 foraging	 specializations	 in	 the	 genus	Orcinus. 
Oecologia,	89,	125–132.	https://doi.org/10.1007/BF00319024

Baird,	 R.	W.,	 Schorr,	G.	 S.,	Webster,	D.	 L.,	McSweeney,	D.	 J.,	Hanson,	
M.	B.,	&	Andrews,	R.	D.	(2010).	Movements	and	habitat	use	of	sat-
ellite‐tagged	 false	 killer	whales	 around	 the	main	Hawaiian	 Islands.	
Endangered Species Research,	10,	107–121.	https://doi.org/10.3354/
esr00258

Baird,	R.	W.,	&	Whitehead,	H.	 (2000).	 Social	organization	of	mammal‐
eating	killer	whales:	Group	stability	and	dispersal	patterns.	Canadian 
Journal of Zoology,	78,	2096–2105.	https://doi.org/10.1139/z00‐155

Barlow,	J.	(1995).	The	abundance	of	cetaceans	in	California	waters.	Part	
1:	Ship	surveys	in	summer	and	fall	of	1991.	Fishery Bulletin,	93,	1–14.

Beaman,	R.	J.,	O'Brien,	P.	E.,	Post,	A.	L.,	&	De	Santis,	L.	 (2011).	A	new	
high‐resolution	bathymetry	model	for	the	Terre	Adélie	and	George	
V	continental	margin,	East	Antarctica.	Antarctic Science,	23,	95–103.	
https://doi.org/10.1017/S095410201000074X

Becker,	E.,	Foley,	D.,	Forney,	K.,	Barlow,	J.,	Redfern,	J.,	&	Gentemann,	C.	
(2012).	Forecasting	cetacean	abundance	patterns	to	enhance	man-
agement	decisions.	Endangered Species Research,	16,	97–112.	https://
doi.org/10.3354/esr00390

Becker,	E.	A.,	Forney,	K.	A.,	Redfern,	J.	V.,	Barlow,	J.,	Jacox,	M.	G.,	Roberts,	
J.	 J.,	&	Palacios,	D.	M.	 (2018).	 Predicting	 cetacean	 abundance	 and	
distribution	 in	 a	 changing	 climate.	Diversity and Distributions,	1–18,	
https://doi.org/10.1111/ddi.12867

Beerkircher,	L.	R.,	Lee,	D.	W.,	Brown,	C.	J.,	&	Abercrombie,	D.	L.	(2002).	
SEFSC pelagic observer program data summary for 1992–2000.	 US	
Department	 of	 Commerce,	 National	 Oceanic	 and	 Atmospheric	
Administration,	 National	 Marine	 Fisheries	 Service,	 Southeast	
Fisheries	Science	Center.

Bisack,	K.	D.,	&	Sutinen,	J.	G.	(2006).	Harbor	porpoise	bycatch:	ITQs	or	
time/area	closures	in	the	New	England	gillnet	fishery.	Land Economics,	
82,	85–102.	https://doi.org/10.3368/le.82.1.85

Briscoe,	 D.	 K.,	 Fossette,	 S.,	 Scales,	 K.	 L.,	 Hazen,	 E.	 L.,	 Bograd,	 S.	 J.,	
Maxwell,	 S.	 M.,	 …	 Lewison,	 R.	 L.	 (2018).	 Characterizing	 habitat	
suitability	 for	a	central‐place	 forager	 in	a	dynamic	marine	environ-
ment.	Ecology and Evolution,	8,	2788–2801.	https://doi.org/10.1002/
ece3.3827

Carretta,	J.	V.,	&	Barlow,	J.	(2011).	Long‐term	effectiveness,	failure	rates,	
and	 “dinner	bell”	properties	of	acoustic	pingers	 in	a	gillnet	 fishery.	
Marine Technology Society Journal,	45,	7–19.	https://doi.org/10.4031/
MTSJ.45.5.3

Cayula,	J.‐F.,	&	Cornillon,	P.	(1992).	Edge	detection	algorithm	for	SST	im-
ages.	Journal of Atmospheric and Oceanic Technology,	9,	67–80.	https://
doi.org/10.1175/1520‐0426(1992)009<0067:EDAFSI>2.0.CO;2

Chatfield,	C.	(1995).	Model	uncertainty,	data	mining	and	statistical	infer-
ence	(with	discussion).	Journal of the Royal Statistical Society. Series A: 
Statistics in Society,	158,	419–466.	https://doi.org/10.2307/2983440

Cotté,	C.,	Park,	Y.‐H.,	Guinet,	C.,	&	Bost,	C.‐A.	(2007).	Movements	of	for-
aging	king	penguins	 through	marine	mesoscale	eddies.	Proceedings 
of the Royal Society of London B: Biological Sciences,	274,	2385–2391.

Dalton,	M.	G.,	&	Ralston,	S.	(2004).	The	California	rockfish	conservation	
area	and	groundfish	trawlers	at	moss	landing	harbor.	Marine Resource 
Economics,	19,	67–83.	https://doi.org/10.1086/mre.19.1.42629419

http://www.movebank.org
https://orcid.org/0000-0002-6297-0091
https://orcid.org/0000-0002-6297-0091
https://doi.org/10.1007/s00300-008-0487-z
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1007/BF00319024
https://doi.org/10.3354/esr00258
https://doi.org/10.3354/esr00258
https://doi.org/10.1139/z00-155
https://doi.org/10.1017/S095410201000074X
https://doi.org/10.3354/esr00390
https://doi.org/10.3354/esr00390
https://doi.org/10.1111/ddi.12867
https://doi.org/10.3368/le.82.1.85
https://doi.org/10.1002/ece3.3827
https://doi.org/10.1002/ece3.3827
https://doi.org/10.4031/MTSJ.45.5.3
https://doi.org/10.4031/MTSJ.45.5.3
https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
https://doi.org/10.2307/2983440
https://doi.org/10.1086/mre.19.1.42629419


     |  921THORNE ET al.

Douglas,	D.	C.,	Weinzierl,	R.,	C.	Davidson,	S.,	Kays,	R.,	Wikelski,	M.,	&	
Bohrer,	G.	(2012).	Moderating	Argos	location	errors	in	animal	track-
ing	data.	Methods in Ecology and Evolution,	3,	999–1007.	https://doi.
org/10.1111/j.2041‐210X.2012.00245.x

Dragon,	A.‐C.,	Monestiez,	P.,	Bar‐Hen,	A.,	&	Guinet,	C.	 (2010).	Linking	
foraging	behaviour	 to	physical	oceanographic	structures:	Southern	
elephant	 seals	 and	 mesoscale	 eddies	 east	 of	 Kerguelen	 Islands.	
Progress in Oceanography,	 87,	 61–71.	 https://doi.org/10.1016/j.
pocean.2010.09.025

Dunn,	 D.	 C.,	 Boustany,	 A.	 M.,	 &	 Halpin,	 P.	 N.	 (2011).	 Spatio‐tempo-
ral	 management	 of	 fisheries	 to	 reduce	 by‐catch	 and	 increase	
fishing	 selectivity.	 Fish and Fisheries,	 12,	 110–119.	 https://doi.
org/10.1111/j.1467‐2979.2010.00388.x

Dunn,	D.	C.,	Kot,	C.	Y.,	&	Halpin,	P.	N.	(2008).	A	comparison	of	methods	to	
spatially	represent	pelagic	longline	fishing	effort	in	catch	and	bycatch	
studies.	 Fisheries Research,	 92,	 268–276.	 https://doi.org/10.1016/j.
fishres.2008.01.006

Dunn,	 D.	 C.,	Maxwell,	 S.	M.,	 Boustany,	 A.	M.,	 &	Halpin,	 P.	 N.	 (2016).	
Dynamic	 ocean	management	 increases	 the	 efficiency	 and	 efficacy	
of	 fisheries	 management.	 Proceedings of the National Academy of 
Sciences,	113,	668–673.

Esteban,	F.,	Tassone,	A.,	Menichetti,	M.,	&	Lodolo,	E.	(2017).	Application	
of	slope	maps	as	a	complement	of	bathymetry:	Example	from	the	SW	
Atlantic.	Marine Geodesy,	40,	57–71.	https://doi.org/10.1080/01490
419.2016.1269033

Eveson,	J.	P.,	Hobday,	A.	J.,	Hartog,	J.	R.,	Spillman,	C.	M.,	&	Rough,	K.	M.	
(2015).	Seasonal	forecasting	of	tuna	habitat	in	the	Great	Australian	
Bight.	 Fisheries Research,	 170,	 39–49.	 https://doi.org/10.1016/j.
fishres.2015.05.008

Fielding,	A.	H.,	&	Bell,	J.	F.	(1997).	A	review	of	methods	for	the	assess-
ment	 of	 prediction	 errors	 in	 conservation	 presence/absence	mod-
els.	Environmental Conservation,	24,	38–49.	https://doi.org/10.1017/
S0376892997000088

Fullard,	K.,	Early,	G.,	Heide‐Jørgensen,	M.,	Bloch,	D.,	Rosing‐Asvid,	A.,	&	
Amos,	W.	 (2000).	Population	 structure	of	 long‐finned	pilot	whales	
in	 the	North	Atlantic:	A	correlation	with	 sea	 surface	 temperature?	
Molecular Ecology,	9,	949–958.

Funes‐Rodrigues,	R.,	Hinojosa‐Medina,	A.,	Aceves‐Medina,	G.,	Jimenez‐
Rosenberg,	 S.,	 &	 Jesus	 Bautista‐Romero,	 J.	 (2006).	 Influences	
of	 El	 Niño	 on	 assemblages	 of	mesopelagic	 fish	 larvae	 along	 the	
Pacific	 coast	 of	 Baja	 California	 Sur.	 Fisheries Oceanography,	 15,	 
244–255.

Gannon,	D.	P.,	Read,	A.	J.,	Craddock,	J.	E.,	Fristrup,	K.	M.,	&	Nicolas,	J.	
R.	 (1997).	Feeding	ecology	of	 long‐finned	pilot	whales	Globicephala 
melas	 in	the	western	North	Atlantic.	Marine Ecology Progress Series,	
1–10.	https://doi.org/10.3354/meps148001

Garrison,	L.	P.	(2007).	Interactions	between	marine	mammals	and	pelagic	
longline	 fishing	 gear	 in	 the	US	 Atlantic	Ocean	 between	 1992	 and	
2004.	Fishery Bulletin,	105,	408–417.

Genin,	 A.,	 Greene,	 C.,	 Haury,	 L.,	 Wiebe,	 P.,	 Gal,	 G.,	 Kaartvedt,	 S.,	
…	 Dawson,	 J.	 (1994).	 Zooplankton	 patch	 dynamics:	 Daily	 gap	
formation	 over	 abrupt	 topography.	 Deep Sea Research Part 
I: Oceanographic Research Papers,	 41,	 941–951.	 https://doi.
org/10.1016/0967‐0637(94)90085‐X

Gillies,	 C.	 S.,	 Hebblewhite,	 M.,	 Nielsen,	 S.	 E.,	 Krawchuk,	 M.	 A.,	
Aldridge,	 C.	 L.,	 Frair,	 J.	 L.,	 …	 Jerde,	 C.	 L.	 (2006).	 Application	
of	 random	 effects	 to	 the	 study	 of	 resource	 selection	 by	 an-
imals.	 Journal of Animal Ecology,	 75,	 887–898.	 https://doi.
org/10.1111/j.1365‐2656.2006.01106.x

Gilman,	E.,	Brothers,	N.,	McPherson,	G.,	&	Dalzell,	P.	(2007).	A	review	of	
cetacean	interactions	with	longline	gear.	Journal of Cetacean Research 
and Management,	8,	215.

Guisan,	A.,	&	Zimmermann,	N.	E.	(2000).	Predictive	habitat	distribution	
models	 in	 ecology.	 Ecological Modelling,	 135,	 147–186.	 https://doi.
org/10.1016/S0304‐3800(00)00354‐9

Hart,	 K.	M.,	 &	Hyrenbach,	 K.	 D.	 (2009).	 Satellite	 telemetry	 of	marine	
megavertebrates:	 The	 coming	 of	 age	 of	 an	 experimental	 science.	
Endangered Species Research,	 10,	 9–20.	 https://doi.org/10.3354/
esr00238

Hartel,	E.	F.,	Constantine,	R.,	&	Torres,	L.	G.	(2015).	Changes	in	habitat	use	
patterns	by	bottlenose	dolphins	over	a	10‐year	period	render	static	
management	 boundaries	 ineffective.	 Aquatic Conservation: Marine 
and Freshwater Ecosystems,	 25,	 701–711.	 https://doi.org/10.1002/
aqc.2465

Hayes,	S.	A.,	Josephson,	E.,	Maze‐Foley,	K.,	Rosel,	P.	E.,	Byrd,	B.	L.,	Cole,	
T.,	…Henry,	A.	(2017).	US	Atlantic	and	Gulf	of	Mexico	Marine	Mammal	
Stock	Assessments−	2016.	NOAA Tech. Memo. NMFS NE,	241.

Hazen,	E.	 L.,	 Jorgensen,	 S.,	Rykaczewski,	R.	R.,	Bograd,	 S.	 J.,	 Foley,	D.	
G.,	 Jonsen,	 I.	D.,	…	Block,	B.	A.	 (2013).	 Predicted	 habitat	 shifts	 of	
Pacific	top	predators	in	a	changing	climate.	Nature Climate Change,	3,	
234–238.	https://doi.org/10.1038/nclimate1686

Hazen,	 E.	 L.,	 Palacios,	 D.	M.,	 Forney,	 K.	 A.,	 Howell,	 E.	 A.,	 Becker,	 E.,	
Hoover,	A.	L.,	…	Mate,	B.	R.	(2016).	WhaleWatch:	A	dynamic	manage-
ment	tool	for	predicting	blue	whale	density	in	the	California	Current.	
Journal of Applied Ecology,	54,	1415–1428.

Hazen,	E.	 L.,	 Scales,	K.	 L.,	Maxwell,	 S.	M.,	Briscoe,	D.	K.,	Welch,	H.,	
Bograd,	S.	 J.,	…	Lewison,	R.	L.	 (2018).	A	dynamic	ocean	manage-
ment	 tool	 to	 reduce	 bycatch	 and	 support	 sustainable	 fisheries.	
ScienceAdvances,	 4,	 eaar3001.	 https://doi.org/10.1126/sciadv.
aar3001

Herman,	A.	W.,	Sameoto,	D.	D.,	&	Longhurst,	A.	R.	(1981).	Vertical	and	
horizontal	 distribution	 patterns	 of	 copepods	 near	 the	 shelf	 break	
south	 of	 Nova	 Scotia.	 Canadian Journal of Fisheries and Aquatic 
Sciences,	38,	1065–1076.	https://doi.org/10.1139/f81‐147

Hobday,	 A.,	 &	 Hartmann,	 K.	 (2006).	 Near	 real‐time	 spatial	 manage-
ment	 based	 on	 habitat	 predictions	 for	 a	 longline	 bycatch	 spe-
cies.	 Fisheries Management and Ecology,	 13,	 365–380.	 https://doi.
org/10.1111/j.1365‐2400.2006.00515.x

Hobday,	A.	J.,	Hartog,	J.	R.,	Spillman,	C.	M.,	&	Alves,	O.	(2011).	Seasonal	
forecasting	 of	 tuna	 habitat	 for	 dynamic	 spatial	 management.	
Canadian Journal of Fisheries and Aquatic Sciences,	 68,	 898–911.	
https://doi.org/10.1139/f2011‐031

Hosmer,	D.,	&	Lemeshow,	S.	(2000).	Applied logistic regression.	New	York,	
NY:	John	Wiley	&	Sons	Inc.

Howell,	E.	A.,	Kobayashi,	D.	R.,	Parker,	D.	M.,	Balazs,	G.	H.,	&	Polovina,	
J.	 J.	 (2008).	TurtleWatch:	A	 tool	 to	aid	 in	 the	bycatch	 reduction	of	
loggerhead	turtles	Caretta caretta	in	the	Hawaii‐based	pelagic	long-
line	 fishery.	 Endangered Species Research,	 5,	 267–278.	 https://doi.
org/10.3354/esr00096

Hsieh,	C.‐H.,	Kim,	H.	J.,	Watson,	W.,	Di	Lorenzo,	E.,	&	Sugihara,	G.	(2009).	
Climate‐driven	 changes	 in	 abundance	 and	distribution	of	 larvae	of	
oceanic	fishes	in	the	southern	California	region.	Global Change Biology,	
15,	2137–2152.	https://doi.org/10.1111/j.1365‐2486.2009.01875.x

Hunt,	G.	 Jr,	&	 Schneider,	D.	 (1987).	 Scale‐dependent	 processes	 in	 the	
physical	and	biological	environment	of	marine	birds.	 In	J.	P.	Croxall	
(Eds.),	Seabirds: feeding ecology and role in marine ecosystems	 (pp.	7–
41).	Cambridge,	UK:	Cambridge	University	Press.

Irons,	D.	B.	(1998).	Foraging	area	fidelity	of	individual	seabirds	in	relation	
to	 tidal	 cycles	 and	 flock	 feeding.	Ecology,	79,	 647–655.	https://doi.
org/10.1890/0012‐9658(1998)079[0647:FAFOIS]2.0.CO;2

Jensen,	 F.	 H.,	 Perez,	 J.	M.,	 Johnson,	M.,	 Soto,	 N.	 A.,	 &	Madsen,	 P.	 T.	
(2011).	 Calling	 under	 pressure:	 short‐finned	 pilot	whales	make	 so-
cial	calls	during	deep	foraging	dives.	Proceedings of the Royal Society 
of London B: Biological Sciences,	278(1721),	3017–3025.	https://doi.
org/10.1098/rspb.2010.2604.

Johnston,	 D.,	 Thorne,	 L.,	 &	 Read,	 A.	 (2005).	 Fin	whales	Balaenoptera 
physalus	 and	 minke	 whales	 Balaenoptera acutorostrata	 exploit	 a	
tidally	 driven	 island	wake	 ecosystem	 in	 the	Bay	 of	 Fundy.	Marine 
Ecology Progress Series,	 305,	 287–295.	 https://doi.org/10.3354/
meps305287

https://doi.org/10.1111/j.2041-210X.2012.00245.x
https://doi.org/10.1111/j.2041-210X.2012.00245.x
https://doi.org/10.1016/j.pocean.2010.09.025
https://doi.org/10.1016/j.pocean.2010.09.025
https://doi.org/10.1111/j.1467-2979.2010.00388.x
https://doi.org/10.1111/j.1467-2979.2010.00388.x
https://doi.org/10.1016/j.fishres.2008.01.006
https://doi.org/10.1016/j.fishres.2008.01.006
https://doi.org/10.1080/01490419.2016.1269033
https://doi.org/10.1080/01490419.2016.1269033
https://doi.org/10.1016/j.fishres.2015.05.008
https://doi.org/10.1016/j.fishres.2015.05.008
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.3354/meps148001
https://doi.org/10.1016/0967-0637(94)90085-X
https://doi.org/10.1016/0967-0637(94)90085-X
https://doi.org/10.1111/j.1365-2656.2006.01106.x
https://doi.org/10.1111/j.1365-2656.2006.01106.x
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.3354/esr00238
https://doi.org/10.3354/esr00238
https://doi.org/10.1002/aqc.2465
https://doi.org/10.1002/aqc.2465
https://doi.org/10.1038/nclimate1686
https://doi.org/10.1126/sciadv.aar3001
https://doi.org/10.1126/sciadv.aar3001
https://doi.org/10.1139/f81-147
https://doi.org/10.1111/j.1365-2400.2006.00515.x
https://doi.org/10.1111/j.1365-2400.2006.00515.x
https://doi.org/10.1139/f2011-031
https://doi.org/10.3354/esr00096
https://doi.org/10.3354/esr00096
https://doi.org/10.1111/j.1365-2486.2009.01875.x
https://doi.org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2
https://doi.org/10.1098/rspb.2010.2604
https://doi.org/10.1098/rspb.2010.2604
https://doi.org/10.3354/meps305287
https://doi.org/10.3354/meps305287


922  |     THORNE ET al.

Keene,	K.	F.,	Beerkircher,	L.	R.,	&	Lee,	D.	W.	(2007).	SEFSC	Pelagic	Observer	
Program	data	summary	for	1992–2004.	US	Department	of	Commerce,	
National	Oceanic	 and	Atmospheric	Administration,	National	Marine	
Fisheries	Service,	Southeast	Fisheries	Science	Center.

Kock,	K.‐H.,	Purves,	M.	G.,	&	Duhamel,	G.	(2006).	Interactions	between	
cetacean	and	fisheries	in	the	Southern	Ocean.	Polar Biology,	29,	379–
388.	https://doi.org/10.1007/s00300‐005‐0067‐4

Lewison,	 R.	 L.,	 Crowder,	 L.	 B.,	 Read,	 A.	 J.,	 &	 Freeman,	 S.	 A.	 (2004).	
Understanding	 impacts	of	 fisheries	bycatch	on	marine	megafauna.	
Trends in Ecology & Evolution,	19,	598–604.	https://doi.org/10.1016/j.
tree.2004.09.004

Lewison,	R.	l.,	Crowder,	L.	B.,	Wallace,	B.	P.,	Moore,	J.	E.,	Cox,	T.,	Zydelis,	R.,	
…	Safina,	C.	(2014).	Global	patterns	of	marine	mammal,	seabird,	and	sea	
turtle	bycatch	reveal	taxa‐specific	and	cumulative	megafauna	hotspots.	
Proceedings of the National Academy of Sciences of the United States of 
America,	111,	5271–5276.	https://doi.org/10.1073/pnas.1318960111

Manel,	 S.,	 Dias,	 J.‐M.,	 &	 Ormerod,	 S.	 J.	 (1999).	 Comparing	 discrim-
inant	 analysis,	 neural	 networks	 and	 logistic	 regression	 for	 pre-
dicting	 species	 distributions:	 A	 case	 study	with	 a	 Himalayan	 river	
bird. Ecological Modelling,	 120,	 337–347.	 https://doi.org/10.1016/
S0304‐3800(99)00113‐1

Maxwell,	S.	M.,	Hazen,	E.	L.,	Lewison,	R.	L.,	Dunn,	D.	C.,	Bailey,	H.,	Bograd,	
S.	J.,	…	Crowder,	L.	B.	(2015).	Dynamic	ocean	management:	Defining	
and	 conceptualizing	 real‐time	 management	 of	 the	 ocean.	 Marine 
Policy,	58,	42–50.	https://doi.org/10.1016/j.marpol.2015.03.014

McDonald,	S.	L.,	Lewison,	R.	L.,	&	Read,	A.	J.	(2016).	Evaluating	the	ef-
ficacy	of	 environmental	 legislation:	A	 case	 study	 from	 the	US	ma-
rine	mammal	 Take	Reduction	 Planning	 process.	Global Ecology and 
Conservation,	5,	1–11.	https://doi.org/10.1016/j.gecco.2015.11.009

McManus,	M.	A.,	 &	Woodson,	 C.	 B.	 (2012).	 Plankton	 distribution	 and	
ocean	 dispersal.	 Journal of Experimental Biology,	 215,	 1008–1016.	
https://doi.org/10.1242/jeb.059014

Mintzer,	V.	J.,	Gannon,	D.	P.,	Barros,	N.	B.,	&	Read,	A.	J.	(2008).	Stomach	
contents	 of	 mass‐stranded	 short‐finned	 pilot	 whales	 (Globicephala 
macrorhynchus)	 from	 North	 Carolina.	Marine Mammal Science,	 24,	
290–302.	https://doi.org/10.1111/j.1748‐7692.2008.00189.x

Moore,	 J.	 E.,	Wallace,	 B.	 P.,	 Lewison,	 R.	 L.,	 Žydelis,	 R.,	 Cox,	 T.	 M.,	 &	
Crowder,	 L.	B.	 (2009).	A	 review	of	marine	mammal,	 sea	 turtle	 and	
seabird	 bycatch	 in	USA	 fisheries	 and	 the	 role	 of	 policy	 in	 shaping	
management.	Marine Policy,	33,	435–451.	https://doi.org/10.1016/j.
marpol.2008.09.003

Moore,	S.	E.,	&	Lien,	R.	C.	 (2007).	Pilot	whales	 follow	 internal	 solitary	
waves	in	the	South	China	Sea.	Marine Mammal Science,	23,	193–196.	
https://doi.org/10.1111/j.1748‐7692.2006.00086.x

Munk,	P.,	Larsson,	P.	O.,	Danielssen,	D.	S.,	&	Moksness,	E.	(1995).	Larval	
and	small	juvenile	cod	Gadus	morhua	concentrated	in	the	highly	pro-
ductive	areas	of	a	shelf	break	front.

Murray,	K.	T.,	Read,	A.	J.,	&	SoLow,	A.	R.	 (2000).	The	use	of	time/area	
closures	to	reduce	bycatches	of	harbour	porpoises:	Lessons	from	the	
Gulf	of	Maine	sink	gillnet	 fishery.	Journal of Cetacean Research and 
Management,	2,	135–141.

NMFS	 (2006).	 Final consolidated Atlantic highly migratory species fish-
ery management plan.	 Silver	 Spring,	 MD:	 National	 Oceanic	 and	
Atmospheric	Administration,	National	Marine	Fisheries	Service.

O'Keefe,	C.	E.,	Cadrin,	S.	X.,	&	Stokesbury,	K.	D.	 (2013).	Evaluating	ef-
fectiveness	of	time/area	closures,	quotas/caps,	and	fleet	communi-
cations	 to	 reduce	 fisheries	bycatch.	 ICES Journal of Marine Science,	
71,	1286–1297.

Olden,	J.	D.,	Jackson,	D.	A.,	&	Peres‐Neto,	P.	R.	(2002).	Predictive	models	of	
fish	species	distributions:	A	note	on	proper	validation	and	chance	predic-
tions.	Transactions of the American Fisheries Society,	131,	329–336.	https://
doi.org/10.1577/1548‐8659(2002)131<0329:PMOFSD>2.0.CO;2

Pearce,	 J.,	 &	 Ferrier,	 S.	 (2000).	 Evaluating	 the	 predictive	 performance	 of	
habitat	models	developed	using	logistic	regression.	Ecological Modelling,	
133,	225–245.	https://doi.org/10.1016/S0304‐3800(00)00322‐7

Perry,	A.	L.,	Low,	P.	J.,	Ellis,	J.	R.,	&	Reynolds,	J.	D.	(2005).	Climate	change	
and	distribution	shifts	in	marine	fishes.	Science,	308,	1912–1915.

Quick,	N.	J.,	 Isojunno,	S.,	Sadykova,	D.,	Bowers,	M.,	Nowacek,	D.	P.,	&	
Read,	A.	J.	 (2017).	Hidden	Markov	models	reveal	complexity	in	the	
diving	 behaviour	 of	 short‐finned	 pilot	whales.	 Scientific Reports,	7,	
45765.	https://doi.org/10.1038/srep45765

Read,	A.	J.	(2008).	The	looming	crisis:	Interactions	between	marine	mam-
mals	and	fisheries.	Journal of Mammalogy,	89,	541–548.	https://doi.
org/10.1644/07‐MAMM‐S‐315R1.1

Read,	A.	J.	 (2013).	Development	of	conservation	strategies	to	mitigate	
the	 bycatch	 of	 harbor	 porpoises	 in	 the	Gulf	 of	Maine.	Endangered 
Species Research,	20,	235–250.

Read,	A.	J.,	Drinker,	P.,	&	Northridge,	S.	(2006).	Bycatch	of	marine	mam-
mals	 in	US	 and	 global	 fisheries.	Conservation Biology,	20,	 163–169.	
https://doi.org/10.1111/j.1523‐1739.2006.00338.x

Reeves,	 R.	 R.,	 McClellan,	 K.,	 &	Werner,	 T.	 B.	 (2013).	Marine	 mammal	
bycatch	in	gillnet	and	other	entangling	net	fisheries,	1990	to	2011.	
Endangered Species Research,	 20,	 71–97.	 https://doi.org/10.3354/
esr00481

Reilly,	S.,	&	Barlow,	J.	(1986).	Rates	of	increase	in	dolphin	population	size.	
Fishery Bulletin,	84,	527–533.

Rendell,	 L.,	 &	Whitehead,	 H.	 (2001).	 Culture	 in	 whales	 and	 dolphins.	
Behavioral and Brain Sciences,	24,	309–324.	https://doi.org/10.1017/
S0140525X0100396X

Roberts,	J.	J.,	Best,	B.	D.,	Dunn,	D.	C.,	Treml,	E.	A.,	&	Halpin,	P.	N.	(2010).	
Marine	Geospatial	Ecology	Tools:	An	integrated	framework	for	eco-
logical	 geoprocessing	with	 ArcGIS,	 Python,	 R,	MATLAB,	 and	 C++.	
Environmental Modelling & Software,	 25,	 1197–1207.	 https://doi.
org/10.1016/j.envsoft.2010.03.029

Rodhouse,	P.,	Prince,	P.,	Trathan,	P.,	Hatfield,	E.,	Watkins,	 J.,	Bone,	D.,	
…	White,	M.	 (1996).	Cephalopods	 and	mesoscale	 oceanography	 at	
the	Antarctic	Polar	Front:	Satellite	tracked	predators	locate	pelagic	
trophic	 interactions.	Marine Ecology Progress Series. Oldendorf,	136,	
37–50.	https://doi.org/10.3354/meps136037

Roe,	J.	H.,	Morreale,	S.	J.,	Paladino,	F.	V.,	Shillinger,	G.	 l.,	Benson,	S.	R.,	
Eckert,	S.	A.,	…	Spotila,	J.	R.	(2014).	Predicting	bycatch	hotspots	for	
endangered	 leatherback	 turtles	 on	 longlines	 in	 the	 Pacific	 Ocean.	
Proceedings of the Royal Society of London B: Biological Sciences,	281,	
20132559.	https://doi.org/10.1098/rspb.2013.2559

Rone,	B.	K.,	&	Pace,	R.	M.	III	(2012).	A	simple	photograph‐based	approach	
for	 discriminating	 between	 free‐ranging	 long‐finned	 (Globicephala 
melas)	and	short‐finned	(G. macrorhynchus)	pilot	whales	off	the	east	
coast	 of	 the	 United	 States.	Marine Mammal Science,	 28,	 254–275.	
https://doi.org/10.1111/j.1748‐7692.2011.00488.x

Ropert‐Coudert,	 Y.,	 &	 Wilson,	 R.	 P.	 (2005).	 Trends	 and	 perspectives	
in	 animal‐attached	 remote	 sensing.	 Frontiers in Ecology and the 
Environment,	3,	437–444.	https://doi.org/10.1890/1540‐9295(2005
)003[0437:TAPIAR]2.0.CO;2

Sambrotto,	R.	N.,	Mordy,	C.,	Zeeman,	S.	I.,	Stabeno,	P.	J.,	&	Macklin,	S.	
A.	 (2008).	Physical	 forcing	and	nutrient	conditions	associated	with	
patterns	of	Chl	a	and	phytoplankton	productivity	in	the	southeast-
ern	 Bering	 Sea	 during	 summer.	 Deep Sea Research Part II: Topical 
Studies in Oceanography,	 55,	 1745–1760.	 https://doi.org/10.1016/j.
dsr2.2008.03.003

Scales,	K.	L.,	Miller,	P.	I.,	Embling,	C.	B.,	Ingram,	S.	N.,	Pirotta,	E.,	&	Votier,	
S.	C.	(2014).	Mesoscale	fronts	as	foraging	habitats:	Composite	front	
mapping	reveals	oceanographic	drivers	of	habitat	use	 for	a	pelagic	
seabird.	Journal of the Royal Society Interface,	11,	20140679.	https://
doi.org/10.1098/rsif.2014.0679

Schakner,	Z.	A.,	Lunsford,	C.,	Straley,	J.,	Eguchi,	T.,	&	Mesnick,	S.	L.	(2014).	
Using	models	of	social	transmission	to	examine	the	spread	of	longline	
depredation	behavior	among	sperm	whales	in	the	Gulf	of	Alaska.	PLoS 
ONE,	9,	e109079.	https://doi.org/10.1371/journal.pone.0109079

Shillinger,	G.	L.,	Swithenbank,	A.	M.,	Bailey,	H.,	Bograd,	S.	J.,	Castelton,	
M.	R.,	Wallace,	B.	P.,	…	Block,	B.	A.	 (2011).	Vertical	and	horizontal	

https://doi.org/10.1007/s00300-005-0067-4
https://doi.org/10.1016/j.tree.2004.09.004
https://doi.org/10.1016/j.tree.2004.09.004
https://doi.org/10.1073/pnas.1318960111
https://doi.org/10.1016/S0304-3800(99)00113-1
https://doi.org/10.1016/S0304-3800(99)00113-1
https://doi.org/10.1016/j.marpol.2015.03.014
https://doi.org/10.1016/j.gecco.2015.11.009
https://doi.org/10.1242/jeb.059014
https://doi.org/10.1111/j.1748-7692.2008.00189.x
https://doi.org/10.1016/j.marpol.2008.09.003
https://doi.org/10.1016/j.marpol.2008.09.003
https://doi.org/10.1111/j.1748-7692.2006.00086.x
https://doi.org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2
https://doi.org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1038/srep45765
https://doi.org/10.1644/07-MAMM-S-315R1.1
https://doi.org/10.1644/07-MAMM-S-315R1.1
https://doi.org/10.1111/j.1523-1739.2006.00338.x
https://doi.org/10.3354/esr00481
https://doi.org/10.3354/esr00481
https://doi.org/10.1017/S0140525X0100396X
https://doi.org/10.1017/S0140525X0100396X
https://doi.org/10.1016/j.envsoft.2010.03.029
https://doi.org/10.1016/j.envsoft.2010.03.029
https://doi.org/10.3354/meps136037
https://doi.org/10.1098/rspb.2013.2559
https://doi.org/10.1111/j.1748-7692.2011.00488.x
https://doi.org/10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
https://doi.org/10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
https://doi.org/10.1016/j.dsr2.2008.03.003
https://doi.org/10.1016/j.dsr2.2008.03.003
https://doi.org/10.1098/rsif.2014.0679
https://doi.org/10.1098/rsif.2014.0679
https://doi.org/10.1371/journal.pone.0109079


     |  923THORNE ET al.

habitat	preferences	of	post‐nesting	leatherback	turtles	in	the	South	
Pacific	Ocean.	Marine Ecology Progress Series,	422,	275–289.	https://
doi.org/10.3354/meps08884

Sims,	D.	W.,	&	Quayle,	V.	A.	(1998).	Selective	foraging	behaviour	of	bask-
ing	sharks	on	zooplankton	in	a	small‐scale	front.	Nature,	393,	460–
464.	https://doi.org/10.1038/30959

Stepanuk,	 J.	 E.,	 Read,	 A.	 J.,	 Baird,	 R.	W.,	Webster,	D.	 L.,	 &	 Thorne,	 L.	
H.	(2018).	Spatiotemporal	patterns	of	overlap	between	short‐finned	
pilot	whales	and	the	US	pelagic	longline	fishery	in	the	Mid‐Atlantic	
Bight:	 An	 assessment	 to	 inform	 the	 management	 of	 fisheries	 by-
catch.	 Fisheries Research,	 208,	 309–320.	 https://doi.org/10.1016/j.
fishres.2018.07.008

Stock,	 C.	 A.,	 Pegion,	 K.,	 Vecchi,	G.	 A.,	 Alexander,	M.	A.,	 Tommasi,	D.,	
Bond,	N.	 A.,	…	 Yang,	 X.	 (2015).	 Seasonal	 sea	 surface	 temperature	
anomaly	prediction	for	coastal	ecosystems.	Progress in Oceanography,	
137,	219–236.	https://doi.org/10.1016/j.pocean.2015.06.007

Swets,	 J.	 A.	 (1988).	 Measuring	 the	 accuracy	 of	 diagnostic	 systems.	
Science,	240,	1285.	https://doi.org/10.1126/science.3287615

Thode,	 A.,	 Straley,	 J.,	 Tiemann,	 C.	 O.,	 Folkert,	 K.,	 &	 O’Connell,	 V.	
(2007).	 Observations	 of	 potential	 acoustic	 cues	 that	 attract	
sperm	whales	 to	 longline	 fishing	 in	 the	Gulf	of	Alaska.	The Journal 
of the Acoustical Society of America,	 122,	 1265–1277.	 https://doi.
org/10.1121/1.2749450

Thorne,	L.	H.,	Foley,	H.	J.,	Baird,	R.	W.,	Webster,	D.	L.,	Swaim,	Z.	T.,	&	
Read,	A.	J.	(2017).	Movement	and	foraging	behavior	of	short‐finned	
pilot	whales	 in	 the	Mid‐Atlantic	 Bight:	 Importance	 of	 bathymetric	
features	and	 implications	 for	management.	Marine Ecology Progress 
Series,	584,	245–257.	https://doi.org/10.3354/meps12371

Thorne,	L.	H.,	Hazen,	E.	L.,	Bograd,	S.	 J.,	Foley,	D.	G.,	Conners,	M.	G.,	
Kappes,	M.	A.,	…	Shaffer,	S.	A.	(2015).	Foraging	behavior	links	climate	
variability	and	reproduction	in	North	Pacific	albatrosses.	Movement 
Ecology,	3,	27.	https://doi.org/10.1186/s40462‐015‐0050‐9

Thorne,	L.	H.,	Johnston,	D.	W.,	Urban,	D.	L.,	Tyne,	J.,	Bejder,	L.,	Baird,	
R.	 W.,	 …	 Chapla	 Hill,	 M.	 (2012).	 Predictive	 modeling	 of	 spinner	
dolphin	 (Stenella longirostris)	 resting	 habitat	 in	 the	main	Hawaiian	
Islands.	 PLoS ONE,	 7,	 e43167.	 https://doi.org/10.1371/journal.
pone.0043167

Tommasi,	D.,	Stock,	C.	A.,	Hobday,	A.	J.,	Methot,	R.,	Kaplan,	I.	C.,	Eveson,	
J.	P.,	…	Werner,	F.	E.	(2017).	Managing	living	marine	resources	in	a	dy-
namic	environment:	The	role	of	seasonal	to	decadal	climate	forecasts.	
Progress in Oceanography,	 152,	 15–49.	 https://doi.org/10.1016/j.
pocean.2016.12.011

Torres,	L.	G.,	Sutton,	P.	J.,	Thompson,	D.	R.,	Delord,	K.,	Weimerskirch,	H.,	
Sagar,	P.	M.,	…	Phillips,	R.	A.	 (2015).	Poor	transferability	of	species	
distribution	models	for	a	pelagic	predator,	the	grey	petrel,	indicates	
contrasting	habitat	preferences	across	ocean	basins.	PLoS ONE,	10,	
e0120014.	https://doi.org/10.1371/journal.pone.0120014

US	OFR	 (US	 Office	 of	 the	 Federal	 Register)	 (2009).	 Taking	 of	 marine	
mammals	 incidental	 to	 commercial	 fishing	 operations;	 Atlantic	 pe-
lagic	 longline	 take	 reduction	 plan.	 Final	 rule.	 Fed.	 Regist.	 74(95),	
23349–23358.

US	OFR	(US	Office	of	the	Federal	Register)	 (2016).	Draft	2016	Marine	
Mammal	 Stock	 Assessment	 Reports.	 Federal Register,	 81(196),	
70097–70099.

Waring,	G.	T.,	 Josephson,	E.,	Maze‐Foley,	K.,	&	Rosel,	 P.	 E.	 (2013).	US	
Atlantic	and	Gulf	of	Mexico	marine	mammal	stock	assessments–2012.	
NOAA Tech Memo NMFS NE,	223,	02543‐1026.

Waring,	G.	T.,	 Josephson,	E.,	Maze‐Foley,	K.,	&	Rosel,	 P.	 E.	 (2015).	US	
Atlantic	and	Gulf	of	Mexico	marine	mammal	stock	assessments‐2014.	
NOAA Tech Memo NMFS NE,	231,	361.

Weatherall,	 P.,	 Marks,	 K.,	 Jakobsson,	 M.,	 Schmitt,	 T.,	 Tani,	 S.,	 Arndt,	
J.	 E.,	…	Wigley,	 R.	 (2015).	A	 new	digital	 bathymetric	model	 of	 the	
world's	 oceans.	 Earth and Space Science,	 2,	 331–345.	 https://doi.
org/10.1002/2015EA000107

Weimerskirch,	 H.	 (2007).	 Are	 seabirds	 foraging	 for	 unpredictable	 re-
sources?	Deep Sea Research Part II: Topical Studies in Oceanography,	
54,	211–223.

Werner,	 T.,	 Kraus,	 S.,	 Read,	 A.,	 &	 Zollett,	 E.	 (2006).	 Fishing	 tech-
niques	 to	 reduce	 the	 bycatch	 of	 threatened	 marine	 animals.	
Marine Technology Society Journal,	 40,	 50–68.	 https://doi.
org/10.4031/002533206787353204

Willis‐Norton,	E.,	Hazen,	E.	L.,	Fossette,	S.,	Shillinger,	G.,	Rykaczewski,	
R.	R.,	 Foley,	D.	G.,	…	Bograd,	 S.	 J.	 (2015).	Climate	 change	 impacts	
on	leatherback	turtle	pelagic	habitat	in	the	Southeast	Pacific.	Deep 
Sea Research Part II: Topical Studies in Oceanography,	113,	 260–267.	
https://doi.org/10.1016/j.dsr2.2013.12.019

Wood,	 S.	 N.	 (2004).	 Stable	 and	 efficient	 multiple	 smoothing	 pa-
rameter	 estimation	 for	 generalized	 additive	 models.	 Journal of 
the American Statistical Association,	 99,	 673–686.	 https://doi.
org/10.1198/016214504000000980

Young,	J.,	Bradford,	R.,	Lamb,	T.,	Clementson,	L.,	Kloser,	R.,	&	Galea,	H.	
(2001).	 Yellowfin	 tuna	 (Thunnus albacares)	 aggregations	 along	 the	
shelf	break	off	south‐eastern	Australia:	Links	between	inshore	and	
offshore	 processes.	Marine and Freshwater Research,	 52,	 463–474.	
https://doi.org/10.1071/MF99168

Žydelis,	R.,	Lewison,	R.	L.,	Shaffer,	S.	A.,	Moore,	J.	E.,	Boustany,	A.	M.,	
Roberts,	J.	J.,	…	Tremblay,	Y.	(2011).	Dynamic	habitat	models:	using	
telemetry	data	to	project	fisheries	bycatch.	Proceedings of the Royal 
Society of London B: Biological Sciences,	278,	3191–3200.

BIOSKE TCH

The	 shared	 interests	of	 the	 research	 team	 focus	on	 the	use	of	
telemetry,	 satellite	 oceanography	 and	 quantitative	methods	 to	
evaluate	the	habitat	use	of	pelagic	marine	mammals	in	order	to	
inform	management	and	conservation	efforts.

Author	contributions:	L.H.T.	and	A.J.R.	conceived	the	idea	for	
this	 manuscript;	 R.W.B.,	 D.L.W.	 and	 A.J.R.	 led	 tagging	 stud-
ies;	L.H.T.	designed	the	study	and	analysed	the	data;	J.E.S.	as-
sisted	with	analyses;	and	L.H.T.	led	the	writing	with	all	authors	
participating.

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.				

How to cite this article:	Thorne	LH,	Baird	RW,	Webster	DL,	
Stepanuk	JE,	Read	AJ.	Predicting	fisheries	bycatch:	A	case	
study	and	field	test	for	pilot	whales	in	a	pelagic	longline	fishery.	
Divers Distrib. 2019;25:909–923. https://doi.org/10.1111/
ddi.12912

https://doi.org/10.3354/meps08884
https://doi.org/10.3354/meps08884
https://doi.org/10.1038/30959
https://doi.org/10.1016/j.fishres.2018.07.008
https://doi.org/10.1016/j.fishres.2018.07.008
https://doi.org/10.1016/j.pocean.2015.06.007
https://doi.org/10.1126/science.3287615
https://doi.org/10.1121/1.2749450
https://doi.org/10.1121/1.2749450
https://doi.org/10.3354/meps12371
https://doi.org/10.1186/s40462-015-0050-9
https://doi.org/10.1371/journal.pone.0043167
https://doi.org/10.1371/journal.pone.0043167
https://doi.org/10.1016/j.pocean.2016.12.011
https://doi.org/10.1016/j.pocean.2016.12.011
https://doi.org/10.1371/journal.pone.0120014
https://doi.org/10.1002/2015EA000107
https://doi.org/10.1002/2015EA000107
https://doi.org/10.4031/002533206787353204
https://doi.org/10.4031/002533206787353204
https://doi.org/10.1016/j.dsr2.2013.12.019
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1071/MF99168
https://doi.org/10.1111/ddi.12912
https://doi.org/10.1111/ddi.12912

