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Abstract

We address the problem of identifying individual
cetaceans from images showing the trailing edge of their
fins. Given the trailing edge from an unknown individual,
we produce a ranking of known individuals from a database.
The nicks and notches along the trailing edge define an indi-
vidual’s unique signature. We define a representation based
on integral curvature that is robust to changes in viewpoint
and pose, and captures the pattern of nicks and notches in
a local neighborhood at multiple scales. We explore two
ranking methods that use this representation. The first uses
a dynamic programming time-warping algorithm to align
two representations, and interprets the alignment cost as a
measure of similarity. This algorithm also exploits learned
spatial weights to downweight matches from regions of un-
stable curvature. The second interprets the representation
as a feature descriptor. Feature keypoints are defined at the
local extrema of the representation. Descriptors for the set
of known individuals are stored in a tree structure, which al-
lows us to perform queries given the descriptors from an un-
known trailing edge. We evaluate the top-k accuracy on two
real-world datasets to demonstrate the effectiveness of the
curvature representation, achieving top-1 accuracy scores
of approximately 95% and 80% for bottlenose dolphins and
humpback whales, respectively.

1. Introduction

We address the problem of identifying individual
cetaceans from images of their fins — dorsal fins for bot-

Figure 1. Example images of dorsal fins from the Bottlenose dol-
phin dataset. Although the fins in each row may appear similar,
they are from distinct individuals. Note that the identifying infor-
mation in each fin comes from one or two large markings. Com-
pare this to the case for the Humpback dataset, where the identify-
ing information is spread along the entire contour.

tlenose dolphins, and flukes for humpback whales. Fitting
into the broad domain of contour-based recognition [15],
the fin instance recognition problem is particularly chal-
lenging, as illustrated in Figures 1 and 2.

Our hypothesis is that the information necessary to dis-
tinguish between the outlines of fins from distinct individu-
als is encoded in local measures of integral curvature [12].
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Figure 2. Example images of flukes from the Humpback whale
dataset. The two upper images are from the same individual, while
the two lower images are from distinct individuals. Note that, un-
like for the Bottlenose dataset, the information necessary for iden-
tification is spread along the entire length of the fluke trailing edge.

Differential curvature measures have been applied to a vari-
ety of recognition problems, but these approaches are sensi-
tive to noise [22]. Integral curvature, which produces more
stable measurements, has been applied to category recogni-
tion problems like identifying leaf species [14].

In this paper, we propose novel combinations of integral
curvature representation for extracted outline contours and
two matching algorithms for identifying individuals. The
first interprets the curvature representation as a sequence,
and defines the similarity between two representations as
the cost of warping one sequence onto the other. The second
treats subsections of the representation as feature descrip-
tors, and matches them using approximate nearest neigh-
bors. Each takes a query image and produces a ranking of
known individuals from a database. We also introduce a
method for learning spatial weights that describe the rela-
tive importance of points along the trailing edge, which en-
ables the matching algorithm to assign higher value to the
most distinguishing areas of the fin contours.

In cetacean research, identifying individuals observed
during a survey is a fundamental part of studying popula-
tions. Traditionally, techniques such as tagging or branding
are used to make identification easier. Not only do these re-
quire specialized equipment and training, but they also tend
to be invasive, requiring catch-and-release of wild animals.
As a less invasive alternative, photo identification requires
no direct contact with the animals. Instead, researchers use

images of long-lasting markings, such as nicks, notches, or
scars, to track individuals over time [8, 28].

Photo identification presents its own challenges. The im-
ages showing distinct individuals observed during a study
need to be matched against a database containing images
of known individuals. For large cetacean populations cov-
ering a large geographical area and monitored over a long
time period, this can be very time-consuming when done
using manual methods. Additionally, parts of the trailing
edge required for identification are often occluded by water
or viewpoint, requiring the use of multiple images per in-
dividual. Even when the trailing edge contours are consis-
tently visible, direct matching between trailing edges from
different images is problematic. Because the images are
captured “in the wild”, animals occur in a wide variety of
poses and are photographed from varying viewpoints. Even
for a small change in viewpoint, out-of-plane rotations can
lead to difficulty in matching nicks and notches.

By presenting likely matches for a query individual to
the user in order of similarity, manual identification may
be substantially accelerated by reducing (on average) the
number of individuals to compare per query.

1.1. Time-Warping Sequence Alignment

It is possible to treat the curvature representations of the
trailing edges as vectors and compute their similarity us-
ing any vector norm. The start and endpoints of fins are
ambiguous, and pose and viewpoint stretch some sections
and foreshorten others, so we need to account for nicks and
notches occurring at differing locations along the trailing
edge. We use a dynamic programming time-warping algo-
rithm [23] that computes the alignment cost of two repre-
sentations. Rather than a one-to-one matching, as with a
vector norm, this allows many points from one represen-
tation to match to one point in the other, and vice versa.
This warps one representation onto the other, where the
alignment cost is the sum of errors for local correspon-
dences [12].

1.2. Descriptor Indexing

Considering that the nicks and notches used for identifi-
cation are often sparsely distributed along the trailing edge,
and that points in between offer little value for identifica-
tion, it seems desirable to use only the former when per-
forming an identification. To do this, we compute local ex-
trema in the trailing edge representation, i.e., points corre-
sponding to regions of high curvature in the original trail-
ing edge, and use these as feature keypoints [11]. Between
these keypoints, we extract feature descriptors, resample
them to a fixed length, and normalize using the Euclidean
norm. All individuals from the database are stored in a tree-
like structure, after which the most likely candidate matches
for a given trailing edge are computed using the local naive



Bayes nearest neighbor classifier [19].

1.3. Contributions

The primary contributions of this work are that we (a)
develop an integral curvature measure to represent trailing
edge contours in such a way that the representation is robust
to changes in viewpoint and pose that make direct compari-
son difficult, (b) propose integration of these measures with
time-warping alignment and descriptor indexing algorithms
as two approaches for ranking potential matches, (c) de-
velop a learning algorithm to weight sections of the trailing
edge contour, and (d) produce results using this representa-
tion and these algorithms on real-world datasets from active
cetacea research groups to confirm their efficacy.

2. Related Work
The curvature computed at points along a contour is of-

ten used to represent shape information [6, 14, 20]. For dif-
ferential curvature, this is defined as the change of the angle
of the normal vector along the length of the contour [6].
This representation is sensitive to noise, however, and in-
stead we use integral curvature. A fixed shape is placed at
points along the contour, while measuring the area of the in-
tersection of the shape with the contour [22]. Using integral
curvature to capture shape information is a key part of the
Leafsnap system [14], which classifies leaves by using cur-
vature histograms at multiple scales as shape features. We
briefly compare to Leafsnap in Section 5.

In terms of identifying dolphins from their dorsal fins,
most notable is DARWIN [24]. The key idea behind DAR-
WIN is to account for changes in viewpoint by computing
a transformation between two fins to align them, and using
the resulting sum of squared distances to define a similar-
ity score [25]. As pointed out in [7], a fundamental prob-
lem with this approach is that fins from distinct individuals
are unlikely to align correctly, with the result that similarity
scores cannot be compared reliably to produce a ranking.

Another system, Finscan [9], frames the problem of
comparing two dorsal fins as a string matching problem [1].
In this setting, they compute a low-level string representa-
tion of the trailing edge curvature. Because the curvature
function defined in terms of derivatives is typically noisy,
they refine this representation to a high-level string repre-
sentation. To compute the similarity between two string
representations, they use a linear time-warping algorithm.

In both DARWIN and Finscan, the extraction of the trail-
ing edge is a semi-automatic, interactive process where the
user manually corrects an initial estimate of the trailing
edge. The size of our datasets, as well as our goal of scal-
ing to real-world scenarios, makes comparison with these
systems impractical. Instead, we design our representation
and matching algorithms to be robust against the occasional
inaccurate trailing edge extraction.

In [11], the authors propose a trailing edge indexing al-
gorithm and apply it to great white sharks. After defining
keypoints for feature extraction by convolving the contour
with a Difference-of-Gaussian kernel, they explore the use
of both the Difference-of-Gaussian norm and the descriptor
from [2]. The descriptor indexing algorithm in our work is
similar, except that we instead use the curvature representa-
tion as a feature descriptor.

A notable approach to the more general problem of rank-
ing is the triplet network [10, 27], a natural extension of
the Siamese network [4, 26]. A triplet network is a neu-
ral network that learns a useful representation by minimiz-
ing the distance between the representations of instances of
the same class, while maximizing the distance between rep-
resentations from different classes. One key advantage of
this approach is that the representation does not need to be
designed by hand, rather, it is learned from a large set of
labeled training data. The resulting representation is then
used to embed query instances into the same space, where
a ranking may be computed. We briefly explored the use
of triplet networks using the original trailing edge contours
as well as the curvature representation, but found that our
small datasets would lead to overfitting. Additionally, the
parametric nature of these models makes it difficult to ap-
ply them to new datasets [29], whereas we confirm in Sec-
tion 5.3 that our approach may be applied unchanged to an
unseen dataset of the same species.

3. Datasets and Preprocessing
We use two real-world datasets provided by active re-

search groups to evaluate our approach. The first dataset
is provided by the Sarasota Dolphin Research Program and
is illustrated in Figure 1. This dataset contains 10,713 im-
ages representing 401 distinct bottlenose dolphins (Tursiops
truncatus). Researchers take photos of the dolphins encoun-
tered at a particular time and place, and the best images of
each individual are separated into encounters. These images
are cropped to the dorsal fin and added to the dataset. The
second dataset is provided by the Cascadia Research Col-
lective and shown in Figure 2. This dataset contains 7,173
images representing 3,572 humpback whales (Megaptera
novaeangliae). Unlike the first dataset where each indi-
vidual appears in multiple images per encounter, here each
individual typically appears in only a single image per en-
counter.

Given an image, a fully-convolutional neural network
(FCNN) [16] outputs the probability that each pixel is part
of the trailing edge. Anchor points are computed, and a
shortest-path algorithm selects pixels based on costs de-
termined by a combination of the FCNN and image gra-
dients. For dorsal fins, this includes a spatial transformer
network [13] that transforms the image such that the fin is
approximately perpendicular to the image plane.



4. Individual Identification

4.1. Curvature Representation

Given a trailing edge contour represented as an ordered
set of coordinates, {(x1, y1), (x2, y2), . . . , (xn, yn)}, we
wish to represent this contour such that it is robust to
changes in viewpoint and pose. For this we use an in-
tegral curvature measure that captures local shape infor-
mation at each point along the trailing edge. For a given
point (xi, yi) that lies on the trailing edge, we place a cir-
cle of radius r at the point and find all points on the trail-
ing edge that lie within this circle, i.e., pi = {(xj , yj) |
(xi − xj)

2 + (yi − yj)
2 ≤ r2}. To describe a point (xi, yi)

by its local curvature, we first orient the points pi such that
pi(1) and pi(n) lie on a horizontal line. The coordinates
of the points in pi are then clipped to the dimensions of an
axis-aligned square with side length 2r centered at (xi, yi).
Using the bottom side of this square as the axis for the inde-
pendent variable, we use trapezoidal integration to approxi-
mate the area under the curve defined by the discrete points
pi. We define the curvature c ∈ [0, 1] at this point as the ra-
tio of the area under the curve to the total area of the square,
which implies that the curvature value for a straight line is
c = 0.5. See Figure 3 for an illustration. By computing this
integral curvature measure at all points along the trailing
edge, we obtain the curvature representation of the trailing
edge for a single value of r. To control the extent to which
we capture local and global information, we vary the ra-
dius of the circle placed at each point by choosing multiple
values of r (typically four). The result is a matrix C of di-
mensions m× n, where m is the number of values of r that
we choose and n is the number of points along the trailing
edge. The scalar Cij ∈ [0, 1] is the curvature value for the
ith value of r at the jth point along the trailing edge.

4.2. Ranking

We explore two types of methods that use the curvature
representation defined in Section 4.1 to produce a ranking
of known individuals given a query.

4.2.1 Sequence Alignment

Dynamic Time-Warping. The first method for comparing
representations that we explore interprets the curvature rep-
resentations as temporal sequences and computes an align-
ment cost between them [12, 23]. Given that the start and
endpoints of the trailing edges are not only ambiguous, but
also often under water, it is desirable to allow some degree
of warping when computing correspondences. If we define
ci and c′j as the ith and jth columns (each a vector rep-
resenting the curvature values at a point) of two curvature
representations C and C ′ of lengths m and m′, respectively,
then the total alignment cost c(m,m′) is defined recursively

Figure 3. For a given point (xj , yj), the curve segments lying in-
side circles of radii r1, r2, . . . , rm (left) are transformed to be hor-
izontal (right). The curvature at the point for a particular r is then
defined as the ratio of the area under the curve (shaded) to the area
of a square of side length 2r.

Figure 4. Curvature representation of a dorsal fin from the Bot-
tlenose dataset (top) and fluke from the Humpback dataset (bot-
tom) computed for four different values of r.

as

c(i, j) = d(ci, c
′
j)

+ min{c(i− 1, j), c(i, j − 1), c(i− 1, j − 1)}, (1)

where d defines the distance between two points based on
their curvature values at multiple scales. It is possible to use
a simple vector norm, such as d(ci, c′j) = ||ci − c′j ||2.

Spatial Weights. The definition above, however, treats
the contribution from correspondences along the entire



length of the trailing edge as equal. We know that the end of
the trailing edge is often underwater for dorsal fins, and the
tips often cropped for flukes. Ideally, we would thus like
corresponding points from these unstable regions to con-
tribute less towards the total alignment cost.

To realize the above, we define a weight vector w, where
the elements w1, w2, . . . , wn describe the relative impor-
tance of each point along the trailing edge. In doing so,
we define a more meaningful distance function as

d(ci, c
′
j |w) = wiwj ||ci − c′j ||2, (2)

where the product wiwj scales the contribution of each cor-
respondence to the total alignment cost based on the relative
importance of the points.

Learning the Weights. To determine suitable values
for the elements of w, we frame the problem as an uncon-
strained optimization problem where we maximize the top-
k score (the fraction of times the correct individual appears
in the first k entries of the ranking) over a training set. For
the training set we use the images in the database, and take
the images from a single encounter for each individual to be
used as queries. The separation of images into database and
queries is described in Section 5.1.

To avoid overfitting, rather than learn all the elements of
w, we reduce the number of parameters by expressing w
as a linear combination of the Bernstein polynomials [17]
of degree n evaluated at uniformly spaced points between
0 and 1. The linear combination of Bernstein polynomials
determined by coefficients c is defined as

Bn(x) =

n∑
i=0

cibi,n(x), (3)

where

bi,n(x) =

(
n

i

)
xi(1− x)n−i, i = 0, 1, . . . , n. (4)

These polynomials have two particular properties that are
desirable for our application, namely that (a) they are pos-
itive between 0 and 1, i.e., bi,n(x) ≥ 0 for x ∈ [0, 1],

and (b) they form a partition of unity, i.e.,
n∑

i=0

bi,n(x) = 1.

We use the latter to initialize the search at c = 1, which
leads to a uniform w. We set n = 10 and optimize for the
coefficients c using an open-source package for Bayesian
optimization [21]. These coefficients c define a polyno-
mial f(x|c) on the interval x ∈ [0, 1]. After defining
n uniformly-spaced points x1, x2, . . . , xn on this interval,
where n is the number of points on the trailing edge con-
tour, we compute the entries in the spatial weight vector as
wi = f(xi|c). This leads to the weight vectors shown in
Figure 5 for the Bottlenose and Humpback datasets.

Figure 5. The spatial weight vector w obtained by performing
unconstrained optimization of the top-k score for the Bottlenose
dataset (top) and the Humpback dataset (bottom). Note how the
weights shrink toward the edges. For the Bottlenose dataset the
endpoint of the dorsal fin is often under water. For the Hump-
back dataset the tips of the fluke are sometimes cropped, and the
shortest-path algorithm often skips across the notch.

4.2.2 LNBNN Classification

Similar to [11], we use the local naive Bayes nearest
neighbor (LNBNN) algorithm [19] to produce a ranking of
known individuals [5]. Our work differs from [11] in that
we use the integral curvature representation both to compute
descriptors and to determine keypoints.

Feature Descriptor. Instead of using the Difference-of-
Gaussian norm defined in Equation 1 in [11] to encode local
shape information, we use the curvature representation de-
fined in Section 4.1 of this work. Subsections of the curva-
ture representation are resampled to a fixed length, normal-
ized by the Euclidean norm, and used as feature descriptors.

Feature Keypoints. Similar to [11], we choose the key-
points between which to define the subsections mentioned
above by resampling the curvature representation to a fixed
length and choosing as keypoints the n− 2 largest local ex-
trema of the curvature representation at each scale as well
as the start and endpoints. Combinations of these keypoints
yields

(
n
2

)
subsections per scale, between which we extract

the corresponding values from the curvature representation.
LNBNN Classification. These feature descriptors are

computed for all known individuals in the database, and
placed in a data structure for approximate nearest neighbors
using ANNOY [3]. We compute a score for each individ-
ual using LNBNN classification, specifically Algorithm 2
as defined in [19]. The benefit of using LNBNN instead
of standard approximate nearest neighbors is that it consid-
ers not only the distance to the nearest descriptor from a
given individual, but also the distance to the nearest descrip-
tor from a different individual [5]. The difference between
these is used to update the score, which reduces the contri-
bution from non-distinctive feature descriptors.



5. Experiments
To demonstrate the effectiveness of our curvature repre-

sentation and matching algorithms, we evaluate the two ap-
proaches from Section 4.2 for producing a ranking of known
individuals on the Bottlenose and Humpback datasets. We
use the top-k score, defined as the fraction of the time the
correct individual appears in the first k entries of the rank-
ing, to evaluate time-warping (with and without learned
spatial weights), as well as LNBNN using our curvature de-
scriptor and the Difference-of-Gaussian descriptor [11].

In particular, we show that when using top-1 accuracy,
the curvature representation outperforms the Difference-
of-Gaussian descriptor by 95% to 91% on the Bottlenose
dataset, and 80% to 40% on the Humpback dataset. To
compare against Leafsnap [14], we also construct the His-
togram of Curvature over Scale from our integral curvature
representation, and produce a ranking using the histogram
intersection distance. We were unable to achieve good re-
sults with this, however, and we suspect that the reason is
that computing a histogram over the curvature representa-
tion loses the spatial information of the nicks and notches
necessary for individual identification.

Additionally, because humpback whales often have
uniquely identifying patterns of scarring and pigmentation
on their flukes, we also compare against HotSpotter [5],
which uses LNBNN with SIFT descriptors [18]. The tex-
ture information captured by HotSpotter is complementary
to the curvature of the trailing edge, and so we also evaluate
combining our identification algorithms with HotSpotter.

We run experiments identical to those described in the
following section on two related datasets to ensure the gen-
erality of our approach.

5.1. Defining Queries

Bottlenose Dolphins. We randomly select m = 10 en-
counters for each individual, and use all the images from
these encounters for the database. When an individual ap-
pears in only n encounters such that m > n, we use n − 1
encounters for the database so that we have at least one
query. The images from remaining encounters are used as
query encounters. We also investigate the effect of varying
m on the top-k accuracy in Section 5.4.

Humpback Whales. The Humpback dataset typically
contains only a single image per individual in each en-
counter and two encounters per individual. In practice, this
means that most individuals are represented by one image
in the database.

When evaluating time-warping and HotSpotter, we use
the minimum alignment cost across images in the encounter
as the similarity score. For LNBNN, we stack the descrip-
tors from all images in the encounter to build the query.

We run all experiments on five random splits and report
mean scores, however, there is little variance across runs.

5.2. Qualitative Results

Before quantitatively evaluating our algorithms, we
show successful and unsuccessful identifications for the
Bottlenose and Humpback datasets in Figures 6 and 7, re-
spectively. In each figure, we show the pair of images
(query and database) that contributes the most to the total
score. We plot a minimal subset of matches such that the
sum of the LNBNN scores from these matches is at least
half the total score. Although the matches shown are sparse,
in practice the entire length of the contour is matched, albeit
with lower scores. Pairs of lines of the same color indicate
the start and endpoints of the trailing edge corresponding to
the matched curvature descriptor. The matches are ordered
such that the strongest match is shown in red, and the weak-
est in purple. The sections of the trailing edge not covered
by strong LNBNN matches is shown in blue.

There are two main causes of misidentifications, namely
(a) errors in the contour extraction that cause distinguishing
features to be poorly represented in the curvature vectors,
and (b) distinctions between very smooth trailing edges that
are insufficiently valued by the matching algorithm. Both
are amplified by significant viewpoint differences between
database and query trailing edges for the correct match.

5.3. Ranking Performance

To evaluate ranking performance, we compare two vari-
ations of each of the algorithms from Section 4.2. Next, we
describe the parameter choices for each of these algorithms.

Time-Warping Alignment. When using learned spa-
tial weights, we use the relevant w as shown in Figure 5
for the Bottlenose and Humpback datasets. For the Bot-
tlenose dataset, we resample the curvature representation
to 128 points and set the Sakoe-Chiba bound [23] in the
dynamic time-warping algorithm to 8. We use scales of
{0.04, 0.06, 0.08, 0.10}. For the Humpback dataset, these
are set to 748, 75, and {0.02, 0.04, 0.06, 0.08}, respectively.
For both datasets, we determine the radii of the circles
used for integral curvature (Figure 4) by multiplying the
scales by the maximum dimension of the fin, specifically,
the height for dorsal fins, and the width for flukes.

Descriptor Indexing. When doing LNBNN classifica-
tion, we set the number of keypoints at which we define
contour subsections to 32. The keypoints are placed along
the trailing edge (which is resampled to 1024 points) at the
points corresponding to the local extrema of the curvature or
Difference-of-Gaussian representation, as appropriate. We
set the dimension of the feature descriptors to 32. The top-k
accuracy plateaus or slightly degrades on both datasets for
larger dimensions. We speculate that this is due to the noisy
nature of our extracted trailing edges, where resampling to
a smaller feature dimension acts as a form of smoothing.
The scales for the Difference-of-Gaussian descriptors are
the same as described in [11].



Figure 6. Bottlenose dataset. The top row shows an instance where
the correct individual is ranked first. Note how the strongest match
(shown in red) corresponds to the most distinct notch. The middle
row shows an instance where a different individual is ranked first,
while the correct individual, ranked second, is shown in the bottom
row. For all rows, we show the query (left) and database (right)
images that contribute most to the match score. Weak LNBNN
matches are not shown.

The results for the Bottlenose and Humpback datasets
are shown in Figures 8 and 9, respectively. With LNBNN,
the curvature descriptor outperforms the Difference-of-
Gaussian descriptor for both datasets. We argue that this
is because of the robustness with which integral curvature
can capture noisy local information — with a sufficiently
large number of points representing the trailing edge, the
exact coordinates of any single point have little effect on
the curvature value.

Evaluation. The relative performance of the two match-
ing algorithms is different for the two datasets — it is
likely that this is because of how the identifying informa-
tion is distributed. For the Bottlenose dataset, where only a
few distinct marks are useful for identification, the descrip-
tor indexing approach performs better. For the Humpback
dataset, where the information necessary for identification

Figure 7. Humpback dataset. The top four images show an in-
stance where the correct individual is ranked first (top left), fol-
lowed by the database individual ranked second (top right). The
bottom four images show an instance where a different individual
is ranked first (bottom left), while the correct individual is ranked
second (bottom right). For both cases, we show the query (top) and
database (bottom) images that contribute most to the total match
score. Weak LNBNN matches are not shown.

Figure 8. Top-k scores for time-warping alignment and LNBNN
for the Bottlenose dataset.

is spread along the entire length of the trailing edge, the
time-warping alignment approach achieves similar results.

We repeat these experiments on two smaller datasets to
determine if our approach generalizes to datasets of the
same (or similar) species. On a common dolphin dataset
with 3744 images representing 186 individuals, we achieve
74% top-1 accuracy using time-warping and 69% using
LNBNN, and on a humpback whale dataset with 1388 im-
ages representing 419 individuals, we achieve 86% top-1
accuracy using time-warping and 89% using LNBNN.

5.4. Number of Encounters per Known Individual

While we choose the encounters from the Bottlenose
dataset randomly to evaluate our algorithms, researchers



Figure 9. Top-k scores for time-warping alignment, LNBNN, and
HotSpotter for the Humpback dataset.

Figure 10. The effect of varying the number of encounters used to
represent each individual in the database for the Bottlenose dataset
for the two best performing algorithms on this dataset, namely
time-warping with spatial weights (TW+SW), as well as LNBNN
with curvature descriptors (LNBNN+C).

may wish to choose the best images of each known individ-
ual for the database. Figure 10 shows the effect of increas-
ing the number of encounters. Adding more encounters, and
hence more images, to the database has several advantages.
First, there are more viewpoints represented, which makes
it more likely that a given query aligns well with one from
the database. Second, more images per individual acts as
insurance against the event where images may have distinc-
tive parts of the trailing edge occluded. Choosing database
images to maximize the information content for identifica-
tion is a problem we intend to address in future work.

5.5. Error Correlation

In addition to evaluating the ranking performance of
each algorithm separately, we also explore the possibility
of combining algorithms. If the correct individual appears
in the top-k entries of either of the algorithms, we consider
the match to be correct. Combining our algorithms with
HotSpotter [5] is of particular interest to us, because of their
complementary nature — while our matching algorithms

Figure 11. Combining algorithms that use complementary sources
of information (fluke pigmentation and trailing edge curvature)
improves performance on the Humpback dataset.

use the integral curvature of the trailing edge, HotSpotter
uses SIFT [18] descriptors extracted from the interior of
the fluke to describe the unique patterns of pigmentation.
Figure 11 shows that augmenting time-warping (TW+SW)
with HotSpotter (HS) improves the top-1 accuracy from
80% to 89%, and augmenting LNBNN with HotSpotter im-
proves the top-1 accuracy from 79% to 88%.

6. Conclusion

We introduced novel combinations of integral curvature
representation and two matching algorithms for identifying
individual cetaceans from their fins. This representation
captures the local pattern of nicks and notches in such a
way that they may be compared using either a time-warping
algorithm or descriptor indexing. The effectiveness of our
method is shown by computing accuracy scores on two real-
world datasets, each with distinct challenges. For the Bot-
tlenose dataset, with very little information per image, de-
scriptor indexing outperforms time-warping because it con-
siders not only the feature distance, but also distinctiveness.
For the Humpback dataset, there are few images per indi-
vidual, but many features per image. The time-warping
algorithm is well-suited for this problem, because it pre-
serves the spatial integrity of curvature along the trailing
edge while exploiting learned spatial weights to emphasize
matches from regions of stable curvature. As a result, the
performance of the two algorithms is similar. In both cases,
we demonstrate that we achieve results that can greatly ac-
celerate the process of cetacean identification.

While the focus of this paper has not been on the de-
tails of the contour extraction, a major focus of future work
will be a unified algorithm that works on both species and
leads to a generalization that allows rapid adaptation to new
species. An important consideration will be to restrict the
amount of manually-generated training data required.
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