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INTRODUCTION

Despite a lack of obvious barriers to movement,
many broadly distributed marine species show a high
degree of genetic structure, sometimes on surpris-
ingly small spatial scales (e.g. Fontaine et al. 2007,
Martien et al. 2014, Viricel & Rosel 2014, Gaos et al.
2016). Many potential drivers of population structure

within the marine realm have been identified, in -
cluding resource and habitat specialization, physio-
graphic and oceanographic barriers, and social
organizations that limit gene flow between groups.
The patterns of genetic structuring and the scales at
which it occurs varies widely among species, and
sometimes even between populations of the same
species (e.g. Bérubé et al. 1998, Andrews et al. 2010,
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ABSTRACT: Foraging specialization, environmental barriers, and social structure have driven the
development of strong genetic differentiation within many marine species, including most of the
large dolphin species commonly referred to as ‘blackfish’ (subfamily Globicephalinae). We used
mitochondrial sequence data (mtDNA) and genotypes from 14 nuclear microsatellite loci (nDNA)
to examine patterns of genetic population structure in melon-headed whales Peponocephala elec-
tra (MHWs), poorly known members of the blackfish family for which genetic structuring is
unknown. MHWs are globally distributed in tropical and subtropical waters, and have formed res-
ident populations around oceanic islands. They frequently mass strand, suggesting strong social
cohesion within groups. Based on these characteristics, we hypothesized that MHWs would
exhibit strong regional genetic differentiation, similar to that observed in other members of the
Globicephalinae subfamily. Instead we found only moderate differentiation (median mtDNA ΦST

= 0.204, median nDNA FST = 0.012) among populations both within and between ocean basins.
Our results suggest that populations of MHWs that are resident to oceanic islands maintain a
higher level of genetic connectivity than is seen in most other blackfish. MHWs may be more
behaviorally similar to delphinids from the Delphininae subfamily (particularly the spinner
 dolphin Stenella longirostris), which are known to form coastal and island-associated resident
populations that maintain genetic connectivity either through occasional long-distance dispersal
or gene flow with larger pelagic populations. Our results suggest that differences in social organ-
ization may drive different patterns of population structure in social odontocetes.
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Gaos et al. 2016, Viricel et al. 2016). Nonetheless,
because closely related species often share similar
life history and behavioral traits, broadly similar pat-
terns of genetic structure often emerge among them.
For example, the cetacean subfamily Globicephali-
nae, commonly referred to as ‘blackfish,’ is com-
prised of several species of large, dark-colored dol-
phins, including killer whales Orcinus orca, false
killer whales Pseudorca crassidens, pygmy killer
whales Feresa attenuata, long-finned pilot whales
Globicephala melas, and short-finned pilot whales
G. macrorhynchus. Each of these species exhibits
strong social structure and deep divergences within
the mitochondrial genome, both within and between
ocean basins (Bigg et al. 1987, Amos et al. 1993,
Baird et al. 2008, 2012, McSweeney et al. 2009, Ore-
mus et al. 2009, Morin et al. 2010a, Parsons et al.
2013, Martien et al. 2014).

Melon-headed whales Peponocephala electra
(MHWs) are poorly known members of the blackfish
subfamily. However, much of what we do know
about MHWs suggests that they might also form
strongly differentiated regional populations (Brown -
ell et al. 2009b, Aschettino et al. 2012). They are
globally distributed in oceanic habitats of tropical
and subtropical waters, particularly in continental
and insular slope waters between 20° S and 20° N
(Perryman 2002). MHWs also mass strand frequently
(Brownell et al. 2009b), a recurring pattern observed
in highly social species, such as pilot whales (Olson &
Reilly 2002). A near mass stranding event (i.e. ani-
mals that would have stranded were it not for human
intervention) in Hawai‘i (USA) associated with a
naval exercise utilizing mid-frequency sonar (South -
all et al. 2006, Brownell et al. 2009b), and a mass
stranding in Madagascar associated with a multi-
beam sonar survey (Southall et al. 2013) both raise
concern that this species may be particularly vulner-
able to anthropogenic sounds.

MHWs are typically seen far offshore in deep
water. However, observational, photo-identification,
and anecdotal evidence suggests the presence of
 island- associated populations of MHWs around
Palmyra Atoll and the Marquesas Islands in French
Polynesia (Brownell et al. 2009b), the Hawaiian Ar-
chipelago (Aschettino et al. 2012), and around May-
otte in the Mozambique Channel (Kiszka et al. 2011).
The best-studied populations are those around the
main Hawaiian Islands. Aschettino et al. (2012) used
social network analysis of photo-identification data to
identify and describe the ranges of 2 populations. The
larger of these, referred to as the Hawaiian Islands
(HI) population, has an estimated abundance of 5794

individuals (CV = 0.20; Aschettino 2010). It ranges in
deep waters (>1000 m) among all of the main Hawai-
ian Islands as well as into offshore waters to at least
several hundred kilometers offshore (Woodworth et
al. 2012, Baird 2016). In contrast, the ‘Kohala resident
population’, estimated to number only 447 individuals
(CV = 0.12; Aschettino 2010), is generally restricted to
the small shallow-water shelf (median sighting depth
of 381 m) off the northwestern coast of Hawai‘i  Island
(Fig. 1; Baird 2016). Although the ranges of these
populations partially overlap, individuals from the 2
populations have never been observed together de-
spite photo-identification records dating back more
than 2 decades. A Bayesian analysis of the sighting
records for these 2 populations showed that the dis-
persal rate between them is low enough to render
them demographically independent (Aschettino et al.
2012).

Although the distribution of MHWs, their appar-
ent strong social structure, and the existence of
island- associated populations all suggest that they
may have patterns of genetic differentiation similar
to those of other blackfish, there are several aspects
of MHW behavior that distinguish them from the
rest of the subfamily. They are typically seen in
large aggregations, with mean group sizes in the
hundreds (Brownell et al. 2009b, Hamilton et al.
2009, Kiszka et al. 2011, Baird et al. 2013). In con-
trast, mean group sizes of false killer whales, short-
and long-finned pilot whales, pygmy killer whales,
and killer whales are <30 (Amos et al. 1991, Baird &
Dill 1996, Ottensmeyer & Whitehead 2003, Baird et
al. 2008, 2013, Hamilton et al. 2009). Furthermore,
near some oceanic islands MHWs have been docu-
mented under taking regular daily shoreward−
offshore move ments. During the day they rest in
large groups near the shelf/insular slopes or just off-
shore of barrier reefs, while at night they break off
into smaller groups and move to deep offshore
water to forage (Brownell et al. 2009b). This daily
movement pattern is very similar to that seen in
spinner dolphins Stenella longirostris around ocea -
nic islands (Lammers 2004, Oremus et al. 2007),
where it is thought to reduce predation risk from
open-ocean sharks (Kiszka et al. 2015). However,
this behavior has never been observed for any other
species of blackfish.

Because MHWs have never been studied geneti-
cally, it is unknown whether these behavioral differ-
ences from other blackfish will result in different
 patterns of genetic structure. We hypothesized that
the strong social structure and fine-scale population
structure identified in previous observational and
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photo-identification studies would translate into
strong genetic differentiation at the regional and
global scale, and low mitochondrial haplotypic diver-
sity, similar to what is seen in other blackfish. We
tested this hypothesis using mitochondrial (mtDNA)
sequence data and genotypes from 14 nuclear micro-
satellite loci (nDNA) from multiple putative popula-
tions from the Pacific Ocean. We also compared the
Pacific samples to a small set of samples from the
Atlantic and Indian Oceans to look for evidence of
strong mitochondrial divergence between ocean
basins, as has been described in other species of
blackfish.

MATERIALS AND METHODS

Sample set

Our sample set consisted of 232 samples collected
from animals biopsied at sea (n = 225), stranded dead
on shore (n = 6), or from sloughed skin (n = 1). All
samples were part of the NMFS Marine Mammal and
Sea Turtle Research (MMASTR) Collection, where
they were preserved in either ethanol or salt-saturated
DMSO and frozen at −20°C, or they were frozen at
−80°C without preservative.

We stratified samples geographically and further
stratified the Hawaiian samples into the 2 populations
identified by Aschettino et al. (2012; Fig. 1). Hawaiian
samples were assigned to the Kohala resident popu-
lation if they were from animals known to be mem-
bers of that population based on photo-identification
data or if they were sampled from a group containing
known members of that population. All other Hawai-
ian samples were assigned to the Hawaiian Islands
population. There were no instances of animals hav-
ing been sighted with members of both populations.

Laboratory processing

Genomic DNA was extracted using a lithium chlo-
ride protocol (Gemmell & Akiyama 1996), sodium
chloride protocol (Miller et al. 1988), or Qiagen
DNeasy Blood and Tissue Kit (no. 69506). The 5’ end
of the hypervariable mtDNA control region was
amplified and sequenced in 2 parts on an Applied
Biosystems 3730 sequencer. The PCR cycling profile
and sequencing primers were as described by Mar-
tien et al. (2014). Sequences were assembled and
aligned using SEQED version 1.0.3 (ABI) and Se -
quencher software (versions 4.1 and 4.8; Gene Codes),
resulting in final sequences 961 bp long.
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Fig. 1. Melon-headed whale Peponocephala
electra samples from the Hawaiian Islands (USA)
population (closed circles) and the Kohala resi-
dent population (open triangles). Inset: global 

sampling distribution
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We genotyped the samples at 14 dinucleotide
microsatellite loci: Ttr11, Ttr58, and TtrRC11, derived
from bottlenose dolphin Tursiops truncatus (Rosel et
al. 2005); KWM12at and KWM2at, derived from Orci-
nus orca (Hoelzel et al. 1998); SW19t (Richard et al.
1996), EV1t, and EV14t (Valsecchi & Amos 1996), all
derived from sperm whale Physeter macrocephalus;
SL125t and SL849t, derived from Stenella longirostris
(Galver 2002); D17t, derived from beluga whale Del-
phinapterus leucas (Buchanan et al. 1996); SAM25t,
derived from North Atlantic right whale Eubalaena
glacialis (Waldick et al. 1999); and GATA53, derived
from humpback whale Megaptera novaeangliae
(Palsbøll et al. 1997). DNA was amplified using the
protocols and PCR thermal cycling profiles described
by Martien et al. (2014). The annealing temperature
and fluorescent tag used for each locus are provided
in Table S1 in the Supplement at www. int-res. com/
articles/ suppl/ m577 p205 _ supp. pdf.

Amplicons were visualized on electrophoresis
gels and then genotyped on an ABI 3730 genetic
 analyzer using a commercial internal lane standard
(ROX500®; ABI). Allele size calls were made using
ABI’s GeneMapper (version 4.0) software. Ten per-
cent of samples were randomly chosen for replication
in order to estimate error rates. Negative and positive
controls were included on every genotyping plate to
monitor for contamination and ensure high quality
genotypes. We used real-time PCR (Stratagene) of
the zinc finger (ZFX and ZFY ) genes to genetically
sex the samples (Morin et al. 2005).

Data review

We reviewed all replicate nDNA genotypes for
consistency. We calculated the per-allele error rate
using only the random replicates. Once data genera-
tion was complete, a second, independent genotyper
reviewed 20% of allele size calls, chosen at random.
Any discrepancies between the original calls and
those of the second genotyper were jointly reviewed
by both genotypers. Discrepancies that could not be
resolved were treated as missing data.

We followed the quality protocols described by
Morin et al. (2010b) for the nDNA data set. Samples
that were homozygous at ≥75% of the loci, had geno-
types at <12 loci, or could not be consistently repli-
cated were excluded from the data set. We used
exact tests of Hardy-Weinberg equilibrium (HWE)
and tests for heterozygote deficiency to assess each
locus for deviation from HWE. We looked for evi-
dence of linkage between pairs of loci using Fisher’s

method and the Markov chain method. We used 1000
dememorization steps, 100 batches, and 1000 itera-
tions per batch for both the HWE and linkage dis-
equilibrium tests. We conducted the tests separately
for each stratum and then combined p-values across
strata to obtain a global p-value for each locus. We
identified and excluded from the data set individual
genotypes that were highly influential (log-odds >2)
in deviations from HWE based on the jackknife pro-
cedure described by Morin et al. (2009). All HWE and
linkage disequilibrium tests, including the HWE
jackknife, were conducted in the R package strataG
(R Development Core Team 2014, Archer 2016),
which implements the software GENEPOP version 4
(Rousset 2008).

We identified pairs of samples with identical or
nearly identical (differing at ≤4 loci) genotypes using
the program DROPOUT (McKelvey & Schwartz
2005). For pairs identified by DROPOUT with mis-
matching loci, we reviewed the raw data and, when
necessary, re-genotyped in order to re solve the con-
flict. To ensure the quality of the mtDNA data, we
reviewed all unique haplotypes (i.e. those repre-
sented by a single sample) ≥2 times to confirm the
accuracy of the sequence.

Data analysis

For mtDNA, we used Arlequin version 3.11 (Ex -
coffier et al. 2005) to estimate haplotypic diversity (H)
and nucleotide diversity (π). For the nDNA data set,
we used strataG to estimate allelic richness (AR),
observed heterozygosity (Ho), expected heterozygos-
ity (He), and the mean number of alleles per locus
(NA). We calculated all diversity estimates both within
strata and for the whole data set.

We used the algorithm of Bandelt et al. (1999) as
implemented in PopArt (http://popart.otago.ac.nz)
to generate a median-joining network of our se -
quences. To estimate the magnitude of genetic differ-
entiation between pairs of strata, we calculated both
FST and ΦST (Excoffier et al. 1992) for the mtDNA data
set and FST and F ’ST (Meirmans 2006) for the nDNA.
FST is downwardly-biased when diversity within pop-
ulations is high. F ’ST and ΦST both correct for within-
population diversity and therefore do not exhibit this
bias (Meirmans & Hedrick 2011). ΦST was derived
from Wright’s (1965) formulae and therefore tracks
the expected values from those formulae, whereas
F ’ST does not (Kronholm et al. 2010). ΦST requires the
use of a substitution model to estimate the genetic
distance between pairs of haplotypes. We used jMod-
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elTest 2.1.1 (Guindon & Gascuel 2003, Darriba et al.
2012) to determine which substitution model best fit
our sequence data.

To determine whether the magnitude of mtDNA
differentiation that we observed among MHW strata
was comparable to that for other blackfish, we com-
pared our ΦST estimates to published estimates for
resident killer whales (Parsons et al. 2013), false
killer whales (Martien et al. 2014), long-finned pilot
whales (Oremus et al. 2009), and short-finned pilot
whales (Oremus et al. 2009, Van Cise et al. 2016)
(Table S2 in the Supplement). We grouped the ΦST

values according to whether they were from compar-
isons of strata within the same ocean basin or be -
tween ocean basins and used Mann-Whitney U-tests
to determine whether values were significantly lower
in MHWs than in other blackfish.

We assessed the statistical significance of genetic
differentiation between pairs of strata for both data
sets using χ2 permutation tests (10 000 permutations),
which are more powerful for detecting genetic differ-
entiation than the permutation tests associated with
F-statistics (Hudson et al. 1992, Goudet et al. 1996).
We only included strata with at least 5 samples in
the estimates of differentiation. All FST, F ’ST, and χ2

analyses were conducted in strataG, while ΦST was
calculated in Arlequin v.3.11.

We used the Bayesian clustering algorithm imple-
mented in the program STRUCTURE (Pritchard et
al. 2000, Falush et al. 2003) to cluster samples into
groups based on their nDNA genotypes. We first
included all samples from the Pacific Ocean in the
analysis and had STRUCTURE cluster the samples
into K = 1 to 6 groups. We ran the analysis first with
an uninformative prior (LOCPRIOR=F), and a second
time with a prior based on sampling location
(LOCPRIOR=T), with sampling location set equal to
the stratum from which each sample was collected.
Because STRUCTURE tends to only identify the
highest level of genetic structure within a data set,
we re-ran the analyses but only included samples
from the Hawaiian Islands and Kohala resident pop-
ulations and had STRUCTURE cluster the samples
into K = 1 to 3 groups. We repeated each analysis 5
times for each value of K and compared estimates of
ancestry and likelihood across runs to confirm con-
vergence. We compared the mean log-likelihood for
each value of K to determine the value best sup-
ported by our data. We also calculated ΔK, another
statistic used for determining which value of K best
fits the data (Evanno et al. 2005). All analyses ran for
1 000 000 steps following a burn-in of 50 000 and an
admixture model with correlated frequencies be -

tween groups. We left all other parameters at pro-
gram defaults. We averaged an cestry coefficients of
in dividuals across replicate runs using CLUMPP
(Jakobsson & Rosenberg 2007). All STRUCTURE and
CLUMPP analyses were  conducted from within the
strataG package.

We also used GENELAND (Guillot et al. 2005) to
cluster the samples into groups, again using their
nDNA genotypes. GENELAND uses a Bayesian
clustering algorithm very similar to the one imple-
mented in STRUCTURE. However, the 2 programs
differ with respect to the priors that can be used to
inform the clustering. Unlike STRUCTURE, which
allows the user to specify a prior on the group
member ship of each sample, GENELAND only as -
sumes that clusters will exhibit some degree of geo-
graphic contiguity, as is the case in most natural
populations. The geographic coordinates from which
samples were collected are incorporated into the
analysis, but no a priori information regarding group
membership is used. The spatial prior used by
GENELAND enables it to detect weaker population
structure than is de tectable with STRUCTURE with-
out biasing it toward identifying the groups the re -
searcher suspects exist (François et al. 2006, Olsen
et al. 2014). GENELAND can be instructed to ignore
spatial data, in which case the clustering algorithm
is the equivalent to that used when STRUCTURE is
run with an uninformative prior and no admixture
(Guillot et al. 2005).

We ran GENELAND both with and without spatial
data. For both analyses we first conducted 10 inde-
pendent runs in which the number of groups (K) rep-
resented by the data was allowed to vary from 1 to
10. These runs were checked for convergence and
used to determine the modal value of K. We then ran
a final analysis with K fixed at the modal value in
order to estimate individual assignments to groups.
We post-processed the final run with a burn-in of
2000 iterations in order to determine the posterior
assignment probabilities for individuals, using a
 spatial domain of 200 pixels by 200 pixels. All
runs consisted of 500 000 Markov Chain Monte Carlo
iterations, with results saved every 100 iterations,
and assumed correlated allele frequencies. Because
GENELAND uses straight-line distance in its calcula-
tions of geographic proximity, it cannot properly
account for the movement barriers between ocean
basins. Therefore, we limited our GENELAND analy-
ses to only samples collected from the Pacific Ocean,
and excluded data from 2 stranded animals due to
uncertainty regarding the precise geographic origin
of those samples.
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RESULTS

Data review

We identified 10 pairs of samples that had identical
genotypes. All pairs of duplicates also had matching
haplotypes, were of the same sex, and were collected
from the same stratum. We eliminated 1 sample from
each pair. We excluded 14 samples from the mtDNA
data set because we were unable to obtain high-
quality sequences from them. There were 28 samples
for which we were unable to generate reliable geno-
types. These included all samples from Mayotte,
from which we were unable to extract sufficient qual-
ity DNA for genotyping. We excluded all of these
samples from the nDNA data set, as well as 1 sample
for which we had insufficient tissue for inclusion in
the nDNA laboratory processing. Following all exclu-
sions, our final mtDNA data set included 208 sam-
ples, while the nDNA data set included 193 individu-
als (Tables 1 & 2).

Four samples were identified in the HWE jackknife
analysis as outliers, indicating that they likely con-
tained genotyping errors (Morin et al. 2010b). Each
of these samples was homozygous at the locus in
question (1 at locus EV14t, 3 at GATA53). The geno-
types of these samples at these loci were set to null
for all analyses. Although 3 loci deviated signifi-
cantly from HWE in a single stratum, none of these
de viations was considered significant when p-values
were combined across strata using Fisher’s method.
Fisher’s exact test for linkage disequilibrium was not
significant for any pairs of loci.

Genetic diversity

We detected 45 unique haplotypes (Table 1) and
33 variable sites. Haplotypes 1 and 2 dominated
the samples, occurring in nearly half (88/208) of the
 samples. Most other haplotypes (36/45) were unique
to a single stratum. Haplotypic diversity (H) was
much lower in the Bahamas (H = 0.473, π = 0.001)
than in other strata (H = 0.694−0.933; π = 0.002− 0.005).
The next lowest haplotypic diversity was in the Ko -
hala Resident population. Nucleotide diversity and
estimates of diversity in the nDNA data set were sim-
ilar across all strata. The number of alleles de tected
at the microsatellite loci ranged from 6 (Ttr58) to 13
(KWM12at and KWM2at; Table S1). The nucleotide
substitution model that best fit the data was the
model of Tamura & Nei (1993) with gamma = 0.632.
All mtDNA sequences were submitted to GenBank

(accession numbers are given in Table 1), and
genetic data and strata assignments of all samples
are available from the corresponding author.

Genetic structure

The median-joining network did not reveal any
phylogeographic structure in the mtDNA data set
(Fig. 2). The 2 most common haplotypes are not phy-
logenetically closely related to each other, and were
found in nearly all strata. Although haplotypes 1 and
2 were not found in the Atlantic samples, the 4 hap-
lotypes we identified in the Atlantic (29, 30, 31, and
41) are all more similar to haplotype 2 than haplo-
type 2 is to haplotype 1.

Nearly all pairs of strata were significantly differ-
entiated in the mtDNA data set (Table 3). The only
exceptions were a comparison involving Johnston
Atoll and one involving Mayotte, both of which have
small sample sizes. ΦST values were highest between
the Bahamas and the other strata, ranging from 0.193
to 0.592. ΦST values were lowest in comparisons in -
volving the Hawaiian Islands population (ΦST =
0.018−  0.363). ΦST values were significantly lower
than those reported in other studies of blackfish over-
all and when restricted to only within- or between-
ocean basin comparisons (all Mann-Whitney U com-
parisons, p < 10−10; Table S2).

Patterns of differentiation in the nDNA data set
were similar to those seen in the mtDNA data set
(Table 3). All pairwise comparisons were statistically
significant except for those comparing Johnston Atoll
to other Pacific strata. Mayotte and the South Pacific
did not have enough samples in the nDNA data set to
allow pairwise comparisons. FST values in the nDNA
data set were generally low, ranging from 0.026 to
0.050 for comparisons involving the Bahamas and
from −0.009 to 0.014 for comparisons among Pacific
strata.

When we used an uninformative prior with respect
to group membership, STRUCTURE failed to detect
any genetic structuring within the nDNA data set,
favoring the model with only 1 group (K = 1) (Table S3)
regardless of whether all Pacific samples (Fig. 3A) or
only those from the Hawaiian Islands and Kohala
 resident populations (Fig. 3D) were included in the
analysis.

When we used our a priori stratum assignments as a
prior and included all Pacific samples, likelihood was
maximized when K = 2 (Table S3). The strongest indi-
vidual assignments were for the Palmyra samples,
which had a mean assignment of 95.9% to Group 2
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(Fig. 3B, Table 4). All of the other samples were as-
signed predominantly to Group 2, with the exception
of the South Pacific samples, which had approximately
equal ancestry from both groups (Fig. 3, Table 4).
Likelihood was only slightly lower for the model
with 3 groups (K = 3), and the individual assignments
revealed additional structure, with the Kohala and
Hawaiian Islands samples deriving most of their an-
cestry from different groups (Fig. 3C, Tables 4 & S3).

When only samples from the Hawaiian Islands and
Kohala populations were included in the analysis,
the highest likelihood was for the model with K = 1,
but the model with K = 2 had only slightly lower like-
lihood (Table S3). Further, the model with K = 2
clearly separated the Kohala samples and the Hawai-
ian Islands samples into separate groups (Fig. 3E),
with the Kohala samples deriving an average of
87.0% of their ancestry from Group 1 and the Hawai-
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Haplotype                         Bahamas     Brazil        Guam       Kohala     Johnston   Mayotte         HI         Palmyra   S. Pacific
                                              (11)             (1)             (2)             (43)           (10)             (7)             (72)           (56)             (6)

1 (KT223048)                                                               1                2                                   1               19              14                
2 (KT223049)                                                                                22               1                2               13              13                
3 (KT223050)                                                                                                                                       4                                   
4 (KT223051)                                                                                                                                       6                                   
5 (KT223052)                                                                                                                                       1                                   
6 (KT223053)                                                                                 1                2                                   5                                   
7 (KT223054)                                                                                                   1                                   2                                   
8 (KT223055)                                                                                 9                                                                                          
9 (KT223056)                                                                                 2                                                                                          
10 (KT223057)                                                                                                                                     4                                   
11 (KT223058)                                                                                                                                     1                                   
12 (KT223059)                                                                                                                                     4                                   
13 (KT223060)                                                             1                                                                       1                                   
14 (KT223061)                                                                                                 5                                   7                2                 
15 (KT223062)                                                                                                                                     1                                   
16 (KT223063)                                                                               1                                                     1                                   
17 (KT223064)                                                                                                                                                        3                 
18 (KT223065)                                                                                                                                                        2                 
19 (KT223066)                                                                                                                                                        1                 
20 (KT223067)                                                                                                 1                                                                        
21 (KT223068)                                                                                                                                                        1                 
22 (KT223069)                                                                                                                                                        1                 
23 (KT223070)                                                                                                                                                        1                 
24 (KT223071)                                                                                                                                                        1                 
25 (KT223072)                                                                                                                                                        3                 
26 (KT223073)                                                                                                                                                        1                 
27 (KT223074)                                                                                                                                                        3                 
28 (KT223075)                                                                                                                                     1                                   
29 (KT223076)                         2                                                                                                                                                 
30 (KT223077)                         8                                                                                                                                                 
31 (KT223078)                                           1                                                                                                                               
32 (KT223079)                                                                               4                                                                                          
33 (KT223080)                                                                               2                                                                                          
34 (KT223081)                                                                                                                                     1                                   
35 (KT223082)                                                                                                                                     1                                   1
36 (KT223083)                                                                                                                                                                           2
37 (KT223084)                                                                                                                                                                           1
38 (KT223085)                                                                                                                                                                           1
39 (KT223086)                                                                                                                                                        1                1
40 (KT223087)                                                                                                                                                        6                 
41 (KT223088)                         1                                                                                                                                                 
42 (KT223089)                                                                                                                   3                                                     
43 (KT223090)                                                                                                                   1                                                     
44 (KT223091)                                                                                                                                                        2                 
45 (KT223092)                                                                                                                                                        1

Table 1. Melon-headed whale Peponocephala electra haplotype frequencies by stratum (sample sizes in parentheses below 
locations). GenBank accession numbers are given in parentheses in the first column. HI: Hawaiian Islands
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ian Islands samples deriving 89.0% of their ancestry
from Group 2.

GENELAND identified 3 groups within our Pacific
samples, regardless of whether we incorporated spa-
tial information into the analysis (Table 5). When spa-
tial data were ignored, most Palmyra samples clus-
tered into their own group, but the 2 Hawaiian strata

were not well differentiated. When the spatial data
were incorporated, the resulting cluster corre-
sponded closely to previously described populations:
Group 1 contained all samples from Palmyra and
no other samples, Group 2 contained 39 out of 41
(95.1%) Kohala samples, plus 8 of the 69 (11.6%)
Hawaiian Islands samples, and all remaining sam-
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Atlantic
Guam
Kohala
Johnston
Mayotte
HI
Palmyra
S. Pacific

Fig. 2. Median-joining network. Each colored node represents a haplotype of melon-headed whales Peponocephala electra,
while white nodes represent haplotypes that are hypothesized to exist but were not detected within our data set. Nodes are
color-coded according to the stratum in which a given haplotype was detected. Each hash mark on lines connecting nodes
 represents 1 mutational change. Numbers next to nodes correspond to haplotype numbers in Table 1, and node size is pro-

portional to the frequencies of haplotypes

                                            mtDNA                                                                   nDNA
Stratum                              n           Nh           H            π                                 n           NA          AR          He          Ho       HWE p

Bahamas                           11           3         0.473     0.001                            10         4.43       0.470     0.652     0.681     0.466
Brazil                                  1             1           NA         NA                               0           na           na           na           na           na
Guam                                 2             2         1.000     0.002                             2          2.50         na        0.619     0.500     0.682
Kohala                               43           8         0.694     0.003                            41         7.00       0.172     0.713     0.725     0.861
Johnston                           10           5         0.756     0.002                            10         5.29       0.534     0.708     0.695     0.790
Mayotte                             7             4         0.810     0.003                             0           na           na           na           na           na
HI                                       72           17        0.877     0.003                            70         8.21       0.120     0.733     0.727     0.591
Palmyra                             56           17        0.873     0.003                            56         7.71       0.141     0.723     0.726     0.168
S. Pacific                             6             5         0.933     0.005                             4          4.07         na        0.753     0.661     0.943
Overall                             208         45        0.899     0.004                           193       10.57     0.055     0.737     0.706     0.891

Table 2. Estimates of genetic diversity in the mtDNA and nDNA data sets of melon-headed whales Peponocephala electra,
by stratum and overall. Columns show sample size (n), number of haplotypes (Nh), haplotypic diversity (H), nucleotide diver-
sity (π), mean number of alleles per locus (NA), allelic richness (AR), expected heterozygosity (He), observed heterozygosity
(Ho), and the overall p-value from an exact test of Hardy-Weinberg equilibrium (HWE p). Allelic richness within strata was
based on a minimum sample size of 7, while overall allelic richness was based on a sample size of 186. We did not calculate
allelic richness in Guam or the South Pacific due to the low sample size. HI: Hawaiian Islands. na: not analyzed due to in-

sufficient samples
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ples (4.9% of Kohala samples, 88.4% Hawaiian
Islands samples, and 100% of Guam, Johnston, and
South Pacific samples) were assigned to Group 3
(Table 5).

DISCUSSION

Patterns of mitochondrial divergence

Based on available knowledge for MHWs prior to
our study, we predicted we would find strong differ-
entiation between putative populations and deep
divergences within the MHW mitochondrial se -
quences, similar to what has been reported for other
blackfish species (e.g. Oremus et al. 2009, Parsons et
al. 2013, Martien et al. 2014, Van Cise et al. 2016).
However, our data did not reveal any such pattern.
Rather, we detected a highly reticulated haplotype
network in which closely related haplotypes are as
likely to be from different ocean basins as they are
from the same population. Our sample size from the
Atlantic Ocean was inadequate to assess genetic
diversity there, or to allow robust conclusions regard-
ing genetic differentiation between ocean basins.
Nonetheless, the placement of the 4 Atlantic haplo-

types detected in our sample set suggests that in -
creased sampling from the Atlantic is unlikely to re -
veal a deep divergence between ocean basins. Hap-
lotypic diversity in most strata (Table 2) was also
higher than is typical for other blackfish (e.g. Amos
et al. 1993, Oremus et al. 2009, Parsons et al. 2013,
Martien et al. 2014). Haplotypic diversity was similar
to that observed in smaller delphinids such as spinner
dolphins (Oremus et al. 2007, Andrews et al. 2010),
pantropical spotted dolphins Stenella attenuata
(Escorza-Trevino et al. 2005), and common bottle-
nose dolphins (Tezanos-Pinto et al. 2009, Martien et
al. 2012), species that also do not exhibit deep mito-
chondrial divergences.

The deep mitochondrial divergences observed
within previously studied blackfish species, includ-
ing killer whales, long-finned pilot whales, and false
killer whales, are believed to result from strong
fidelity to natal populations (Amos et al. 1993, Baird
2000, Barrett-Lennard 2000, Ford et al. 2011, Martien
et al. 2014). Although interbreeding among popula-
tions can result in nuclear gene flow, a lack of dis -
persal between populations precludes the exchange
of mtDNA, allowing mtDNA lineages to diverge
via drift. Furthermore, restricted mtDNA gene flow
results in lower mitochondrial effective population

213

Comparison                                                                   mtDNA                                                                 nDNA
                                                                    ΦST                 FST            χ2 p-value                   FST                 F ′ST           χ2 p-value

Bahamas vs. Kohala                                 0.193               0.385 <0.001 0.035 0.113 0.001
Bahamas vs. Johnston                             0.493               0.390 <0.001 0.026 0.080 0.019
Bahamas vs. Mayotte                               0.401               0.381 <0.001 na na na
Bahamas vs. HI                                        0.363               0.272 <0.001 0.033 0.113 0.001
Bahamas vs. Palmyra                               0.343               0.278 <0.001 0.050 0.163 0.001
Bahamas vs. South Pacific                       0.592               0.335 0.001 na na na
Kohala vs. Johnston                                 0.198               0.239 <0.001 −0.009 −0.030 0.937
Kohala vs. Mayotte                                  0.104               0.126 0.006 na na na
Kohala vs. HI                                           0.075               0.117 <0.001 0.006 0.021 0.004
Kohala vs. Palmyra                                  0.061               0.097 <0.001 0.014 0.050 0.001
Kohala vs. South Pacific                          0.216               0.221 <0.001 na na na
Johnston vs. Mayotte                               0.233               0.197 0.008 na na na
Johnston vs. HI                                         0.177               0.099 0.067 −0.006 −0.022 0.884
Johnston vs. Palmyra                               0.219               0.140 <0.001 0.007 0.026 0.114
Johnston vs. South Pacific                       0.249               0.165 0.011 na na na
Mayotte vs. HI                                         0.170               0.067 0.019 na na na
Mayotte vs. Palmyra                                0.204               0.057 0.070 na na na
Mayotte vs. South Pacific                        0.341               0.131 0.045 na na na
HI vs. Palmyra                                         0.018               0.015 <0.001 0.010 0.035 0.001
HI vs. South Pacific                                 0.030               0.099 <0.001 na na na
Palmyra vs. South Pacific                        0.069               0.101 <0.001 na na na

Table 3. Pairwise estimates of genetic differentiation in melon-headed whales Peponocephala electra between strata in both
the mtDNA and nDNA data sets. ΦST values were calculated using the Tamura & Nei (1993) model of nucleotide substitution
with gamma = 0.632. Comparisons involving Mayotte and the South Pacific were only conducted for the mtDNA data set due
to the small sample size for these strata in the nDNA data set. Bold: significant at p < 0.05. HI: Hawaiian Islands, na: 

not analyzed due to insufficient samples
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size, contributing to low haplotypic diversity in these
species. Our results suggest that MHWs do not ex -
hibit strong fidelity to natal groups, but rather dis-
perse between populations at a rate high enough to
prevent the development of geographically restricted
mitochondrial lineages, enabling them to maintain
higher haplotypic diversity than other species of
blackfish.

Population structure

Our analyses did reveal significant differentiation
between most pairs of strata, confirming that these

are distinct populations between which gene flow is
restricted. However, the magnitude of mtDNA dif -
ferentiation between populations was significantly
lower than what has been reported in other species
of blackfish. Estimates of differentiation for both the
mtDNA and nDNA data sets were highest between
the Bahamas and all Pacific strata, indicating that
movement rates between the ocean basins are lower
than within the Pacific, as would be expected. How-
ever, movement rates appear to be high enough to
prevent the development of high levels of differenti-
ation or strong phylogeographic structure.

STRUCTURE was unable to detect any genetic
structuring among Pacific samples when we used an
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Kohala Hawaiian Islands

KohalaGuam Johnston Palmyra S. PacificHawaiian Islands
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B

C

D

E

Fig. 3. STRUCTURE results for analyses using melon-headed whale Peponocephala electra nDNA from (A−C) all Pacific sam-
ples and (D,E) only samples from the Hawaiian Archipelago. For analysis with all Pacific samples, results are shown for models
in which (A) LOCPRIOR = F and K = 2, (B) LOCPRIOR = T and K = 2, and (C) LOCPRIOR = T and K = 3. For analyses with only
Hawaiian samples, results are shown for models where K = 2 with (D) LOCPRIOR = F and (E) LOCPRIOR = T. Each bar rep-
resents a single individual, and is shaded to show the proportion of that individual’s ancestry that is attributable to each 

group (A−C: blue = Group 1, orange = Group 2, green = Group 3; D,E: green = Group 1, orange = Group 2)
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uninformative prior. This result is consistent with
previous performance tests that showed that with
uninformative priors, STRUCTURE generally fails
to detect genetic structure when genetic differentia-
tion is at the magnitude we detected among Pacific
strata (Latch et al. 2006, Waples & Gaggiotti 2006).
The strength of assignments increased substantially
when we used stratum assignments as a prior in the
STRUCTURE analyses, although most samples still
exhibited considerable mixed ancestry. The greatest
change resulting from the use of a location prior
came in the analysis that only included samples from
the Hawaiian Archipelago. Mean ancestry estimates
increased from ~50% (i.e. no information in the data;
Fig. 3D) to >85% when the informative prior was
used (Fig. 3E). Although the model that incorporates
group membership priors was designed to improve
the performance of STRUCTURE in the face of low
levels of differentiation, the fact that it uses hypothe-
sized group membership—the very thing it is trying
to estimate—as a prior leaves it vulnerable to pro-
ducing results that are driven more by the prior than
by the data. The dramatic change in ancestry esti-

mates when we incorporated an
informative prior, combined with the
fact that the posterior assignments
closely match the prior assignments,
suggests that this may be the case in
our analysis.

Even in the absence of spatial data,
GENELAND was able to detect ge -
netic structure within our data set due
to the fact that it uses a no-admixture
model, while we selected a model
with admixture in our STRUCTURE
analyses. The no-admixture model
is known to be more powerful for
detecting structure, but it has the
 limitation of being unable to detect
admixture (Pritchard et al. 2000).
When we incorporated spatial data,
GENELAND identified 3 groups,
which correspond to our 3 strata with
the highest sample sizes: Palmyra,
Hawaiian Islands, and Kohala. The
3 remaining Pacific strata (Guam,
Johnston, and South Pacific) all as -
signed strongly to the same group as
the Hawaiian Islands samples. How-
ever, the assignments of these strata
may reflect their small sample sizes
rather than a genetic similarity to the
Hawaiian Islands.

Unlike STRUCTURE, GENELAND does not incor-
porate any information regarding stratum assign-
ment for individual samples. The only information
available to the analysis was the nDNA genotype and
sampling location of each individual. It assumes
some degree of spatial coherence of clusters, which is
what we would expect if genetic structure were cor-
related with ecological factors such as habitat or prey
distribution, but in no way constrains the geographic
size or location of the clusters. Thus, it is striking that
the geographic range of the Kohala cluster as identi-
fied by GENELAND aligns with the range identified
by photo-identification analyses — the small, shallow-
water shelf off the northwest coast of Hawai‘i Island.
The low haplotypic diversity that we detected in the
Kohala samples further supports the conclusion that
these animals represent a small population that ex -
changes very few dispersers with the larger Hawai-
ian Islands population (Aschettino 2010, Aschettino
et al. 2012).

The adjacency of the ranges of the Kohala and
Hawaiian Islands populations combined with their
large differences in both abundance and habitat led
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Stratum                                   w/oGC                                     wGC
                                Group 1 Group 2 Group 3     Group 1 Group 2 Group 3

Guam (n = 2)             0.000     0.000     1.000         0.000     0.000      1.000
Kohala (n = 43)         0.116     0.442     0.395         0.000     0.951      0.049
Johnston (n = 10)       0.000     1.000     0.000         0.000     0.000      1.000
HI (n = 72)                 0.194     0.361     0.403         0.000     0.116      0.884
Palmyra (n = 56)       0.929     0.054     0.018         1.000     0.000      0.000
S. Pacific (n = 6)        0.000     0.000     1.000         0.000     0.000      1.000

Stratum                                  STRUCTURE
                                  K = 2                                     K = 3
                                        Group 1   Group 2      Group 1   Group 2   Group 3

Guam (n = 2)                     0.614       0.386           0.633       0.178       0.188
Kohala (n = 43)                 0.668       0.332           0.796       0.179       0.025
Johnston (n = 10)             0.689       0.311           0.677       0.143       0.180
HI (n = 72)                         0.498       0.502           0.348       0.025       0.627
Palmyra (n = 56)               0.041       0.959           0.041       0.868       0.091
S. Pacific (n = 6)               0.333       0.667           0.243       0.231       0.525

Table 4. Mean ancestry of individual melon-headed whales Peponocephala
electra from each stratum to the groups identified by STRUCTURE. Results are 

shown for the model that used stratum membership as a prior

Table 5. Proportion of individual melon-headed whales Peponocephala electra
from each stratum assigned to groups identified by GENELAND. Results
are shown for analyses both with and without geographic coordinates of
 samples incorporated. wGC and w/oGC: with and without geographic 

coordinates, respectively
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Aschettino et al. (2012) to suggest that the 2 popula-
tions are exploiting different foraging niches, as has
been suggested for other island-associated cetaceans
within the Hawaiian archipelago (Baird et al. 2009,
Andrews et al. 2010, Martien et al. 2012, 2014, Cour-
bis et al. 2014). Aschettino et al. (2012) hypothesized
that the unique oceanographic characteristics of the
‘Alenuihāhā  Channel, which separates the islands of
Hawai‘i and Maui, may result in a sufficient density
of prey to sustain the Kohala population in a very
small range.

The presence of a behaviorally unique small popu-
lation of MHWs immediately adjacent to the ‘Ale -
nuihāhā  Channel is cause for concern, due to fre-
quent naval operations utilizing mid-frequency sonar
within the channel. MHWs appear to be particularly
sensitive to anthropogenic sound (Southall et al.
2006, Brownell et al. 2009b), a fact that has been
exploited in many parts of the world in drive hunts
where sound is used to drive MHWs toward the
beach where they can be more easily killed or cap-
tured (Brownell et al. 2009a). The limited range of the
Kohala coast population limits their ability to move
away from harmful sound sources, and increases the
risk that they will be displaced into unfavorable or
unfamiliar habitat if they do (Forney et al. 2017).
Thus, the unique characteristics of the Kohala resi-
dent population combined with their proximity to a
known threat warrant additional conservation and
management attention for this small, demographi-
cally independent population.

Possible role of behavior

The differences in genetic structure between
MHWs and other blackfish may be linked to their for-
aging strategies and social organization. At some
islands, the behavior of MHWs resembles a fission−
fusion type structure, where small groups coalesce
into larger aggregations during the day and then
 disperse at night (Brownell et al. 2009b). A similar
organization has been described for spinner dolphin
populations in the Society Archipelago in French
Polynesia (Oremus et al. 2007) and the main Hawai-
ian Islands (Norris et al. 1994), for example. Spinner
dolphins also exhibit patterns of genetic differen -
tiation similar to what we found for MHWs, with
moderately differentiated small, resident populations
oc curring in the nearshore waters around islands
(Galver 2002, Andrews et al. 2010). These similarities
in the patterns of genetic structure support the
hypothesis that the behavior of MHWs is more simi-

lar to that of spinner dolphins than it is to that of other
blackfish.

Like spinner dolphins, MHWs are nocturnal meso-
predators that forage primarily on predictable and
relatively abundant mesopelagic squids and fishes
that undertake daily vertical migrations (e.g.
Brownell et al. 2009b, Kiszka et al. 2011). In contrast,
at least some species of blackfish that exhibit strong
genetic structuring feed on prey that are less pre-
dictable and more difficult to catch. False killer
whales, for example, feed on large pelagic fish (Baird
et al. 2008) and Bigg’s killer whales feed on marine
mammals (Bigg et al. 1987, Baird & Dill 1996). Short-
finned pilot whales, which feed in the deep scatter-
ing layer, also appear to target large, fast-moving,
evasive prey that can be difficult to locate (Aguilar
Soto et al. 2008). Accessing these fast-swimming,
patchily distributed, and hard-to-catch prey is likely
more challenging for large homeothermic predators,
and these cetaceans may rely upon strong, stable
social bonds within foraging groups (Bigg et al. 1990,
Baird & Dill 1996, Baird et al. 2008). Indeed, false
killer whales resident to the main Hawaiian Islands
have been observed engaging in cooperative hunt-
ing and prey sharing (Baird et al. 2008). Differences
in foraging strategies have also been evoked to
explain differences in group size and social organiza-
tion between mammal-eating and fish-eating killer
whales (Baird & Whitehead 2000).

Overall, MHWs have relatively large group sizes
compared to other species of blackfish (e.g. Brownell
et al. 2009b, Baird et al. 2013), which might be a
strategy to reduce predation risk from oceanic pred-
ators such as large pelagic sharks (Gygax 2002; for a
review, see Kiszka et al. 2015). Large groups imply
some higher levels of intra-species competition.
Therefore, MHWs might need to undertake ex -
tensive movements and/or rely on relatively more
productive areas in tropical and typically oligotro-
phic ecosystems, which could increase the size of
their home range and the extent of their movements.
However, the ecological and social drivers of the
magnitude of the movements of MHWs need to be
further investigated.

The patterns of genetic differentiation in spinner
dolphins and MHWs could result from long-distance
dispersal of individuals among populations, or via
gene flow with widespread oceanic populations
(Oremus et al. 2007, Tezanos-Pinto et al. 2009). Large
oceanic populations of MHWs are known to exist, at
least within the Pacific Ocean (Brownell et al. 2009b,
Hamilton et al. 2009), but also most likely in the
Indian Ocean (Mannocci et al. 2014). Although most
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of our samples came from animals known to show
some long-term fidelity to islands, satellite tag data
show that animals from the Hawaiian Islands popula-
tion actually spend most of their time offshore (Baird
2016). This stratum also exhibited the lowest levels of
nDNA differentiation and the weakest clustering in
both the STRUCTURE and GENELAND analyses.
Thus, it is possible that these individuals represent
an oceanic population that shows occasional fidelity
to the Hawaiian Islands, and serves as a conduit for
gene flow throughout the central Pacific. Collecting
samples from the open ocean would be valuable for
further evaluating this possibility, and elucidating
the patterns of connectivity among MHW popula-
tions, particularly between island-associated and
oceanic populations.

Conclusions

Though our results confirm the existence of demo-
graphically independent populations in Hawai‘i iden-
tified in observational and photo-identification stud-
ies, they disprove our original hypothesis that MHW
would exhibit the same global patterns of deep mito-
chondrial divergences and strong genetic structuring
revealed in studies of other blackfish species. Com-
parative studies of groups of closely related species,
such as the blackfish, can provide insight into the bio-
logical and ecological drivers of different patterns of
genetic structure. Future studies linking foraging tac-
tics and social structure of MHWs would provide
valuable information for evaluating the importance
of these aspects of life history in influencing the pat-
terns of genetic differentiation in blackfish and other
 delphinids.
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