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Abstract

The introduction of animal-borne, multisensor tags has opened up many

opportunities for ecological research, making previously inaccessible species and

behaviors observable. The advancement of tag technology and the increasingly

widespread use of bio-logging tags are leading to large volumes of sometimes

extremely detailed data. With the increasing quantity and duration of tag

deployments, a set of tools needs to be developed to aid in facilitating and stan-

dardizing the analysis of movement sensor data. Here, we developed an obser-

vation-based decision tree method to detect feeding events in data from

multisensor movement tags attached to fin whales (Balaenoptera physalus). Fin

whales exhibit an energetically costly and kinematically complex foraging behav-

ior called lunge feeding, an intermittent ram filtration mechanism. Using this

automated system, we identified feeding lunges in 19 fin whales tagged with

multisensor tags, during a total of over 100 h of continuously sampled data.

Using movement sensor and hydrophone data, the automated lunge detector

correctly identified an average of 92.8% of all lunges, with a false-positive rate

of 9.5%. The strong performance of our automated feeding detector

demonstrates an effective, straightforward method of activity identification in

animal-borne movement tag data. Our method employs a detection algorithm

that utilizes a hierarchy of simple thresholds based on knowledge of observed

features of feeding behavior, a technique that is readily modifiable to fit a vari-

ety of species and behaviors. Using automated methods to detect behavioral

events in tag records will significantly decrease data analysis time and aid in

standardizing analysis methods, crucial objectives with the rapidly increasing

quantity and variety of on-animal tag data. Furthermore, our results have

implications for next-generation tag design, especially long-term tags that can

be outfitted with on-board processing algorithms that automatically detect kine-

matic events and transmit ethograms via acoustic or satellite telemetry.

Introduction

Multisensor, bio-logging tags are increasingly used to mea-

sure the movement, physiology, energetics, and behaviors

of animals. This technology has been instrumental in eco-

logical studies, allowing for observation of animals while

they are unrestrained and in their natural environment

(Cooke et al. 2004). These archival kinematic tags have

proven exceptionally useful in environments and time

periods where visual observation of behavior is not possi-

ble, such as far-ranging, avian, nocturnal, subterranean, or

marine species. Modern movement tags incorporate a vari-

ety of sensors including GPS position, accelerometers,

magnetometers, underwater pressure sensors, micro-

phones, gyroscopes, etc. (Yoda et al. 1999; Johnson and

Tyack 2003; Goldbogen et al. 2013a,b). This suite of sen-

sors allows scientists to discern a tagged animal’s behavior

remotely, with varying scales of detail from once-daily
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location information that provides insights into habitat use

of the animal, to detailed information about the animal’s

3D movements recorded multiple times a second. This 3D

movement sensing has already provided fundamental

information about the behaviors of an ever-expanding vari-

ety of species, including penguins, seals, fish, vultures, bad-

gers, pumas, and cheetahs, across a range of environments

(Yoda et al. 1999; Shepard et al. 2008; Gr€unew€alder et al.

2012; Nathan et al. 2012; Broell et al. 2013; Gallon et al.

2013; Watanabe and Takahashi 2013; Wang et al. 2015).

The types of behaviors that can be discerned range from

simple differentiation between “fast” and “slow” move-

ments (Broell et al. 2013) to extremely detailed ethograms

designating activities such as paces of travel (e.g., walking,

trotting, running, slow and fast swimming), drinking, eat-

ing, resting etc. (Watanabe et al. 2005; Moreau et al.

2009). While bio-logging tags are extremely useful in

recording a diverse range of animal movement data, the

duration and detail of such studies have thus far been

inherently limited by battery life, data storage capacity, and

attachment success. However, rapid advances in computer

technology, tagging design and materials, and improve-

ments in attachment methods now allow for much longer

on-animal tag durations, a trend that is likely to continue.

This increase in remote sampling capability is beneficial in

advancing behavioral, physiological, and ecological

research, as it minimizes unknown periods of behavior and

improves detection of trends through time and across dif-

ferent scales (Cooke et al. 2004). Initially, all processing of

on-animal tag data into meaningful behavioral ethograms

was carried out by researchers knowledgeable in the move-

ment, behavior, and kinematics of the study species. How-

ever, the rapid increase in the size and quantity of datasets

means that the manual processing of hours to weeks of

detailed data will quickly become a rate-limiting step.

Development of tools that can leverage the detailed

researcher knowledge of the behavior and movements of

the study species and use this knowledge to program auto-

matic detection of behavioral events in tag data would

greatly reduce analysis time. This would then allow for effi-

cient data processing as well as greatly aid in the standard-

ization of methods and detection rates across studies and

species.

A wide variety of automatic behavioral detection meth-

ods have been introduced in the literature, with differing

strengths and weaknesses to each. In cases where the

behavioral states are unknown to the observer, unsuper-

vised machine learning techniques have been used to clas-

sify movement data into behaviors (Sakamoto et al.

2009). This method requires almost no prior knowledge

of the study species’ behaviors, but alternatively will not

discern all behaviors or always classify them correctly

(Sakamoto et al. 2009). Machine learning techniques have

also been criticized as being “black box” methods that are

difficult to implement and with the criteria used in the

behavioral selection inaccessible to the user (Bidder et al.

2014). Other studies have utilized various forms of super-

vised machine learning techniques, in which a training

dataset is used to inform the criteria selected by the algo-

rithm (Gr€unew€alder et al. 2012; Nathan et al. 2012; Gao

et al. 2013; Bidder et al. 2014). These types of methods

are valuable when dealing with multiple types of behav-

iors, and datasets with high-quality training data and

clearly defined differences in behaviors. However, when

classifying a finite number of well-described behaviors,

simple threshold-based decision rules, or decision tree

models, have proven to be very successful (Lagarde et al.

2008; Moreau et al. 2009).

We use the term “decision tree model” to encompass a

method used by previous studies under a variety of

names. Here, we define it as a series of hierarchical

thresholds and criteria that together can be used to clas-

sify movement tag data into discrete behaviors. This

method has been used in various forms and complexity

in many previous studies. Broell et al. (2013) employed a

simple threshold detector to find peaks in acceleration

signals that indicate a fast versus slow behavioral event in

fish tags. Lagarde et al. (2008) found a single acceleration

pattern could not distinguish between the behaviors of

tortoises, and instead utilized a sequence of movement

and the corresponding acceleration values to define the

behaviors. For more challenging behavioral identification,

Owen et al. (2016) calculated a novel parameter and

combined it with a clear series of linear decision rules to

identify the timing of feeding events in large whales. All

of these methods require a detailed knowledge of the

study species, and the use of skilled observers to confirm

the automated method behavioral identification (Lagarde

et al. 2008; Broell et al. 2013; Owen et al. 2016). At vary-

ing levels of complexity, decision tree methods are being

used across a wide variety of taxa as a simple, easily

implemented method of automated activity detection.

In remotely collected data, the identification of behav-

iors and activity budgets, particularly those such as feed-

ing, represents biologically significant vital rates, which

are extremely relevant to individual and population

health, and ultimately the conservation of the species

(Shepard et al. 2008). Energetics is a common and impor-

tant metric in physiological and ecological studies, as for-

aging rates determine the energy gain and fitness of an

individual. Accurate and continuous identification of for-

aging activity is vital to these energy budgets, as it gives

insights into factors such as dive efficiency for marine

animals (percent of dive time spent foraging) (Watwood

et al. 2006), metabolic rate, productivity, and foraging

ecology (Hazen et al. 2009). These are useful for both
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increased scientific knowledge of a species and identifica-

tion of changes in foraging behavior and energy budgets

in studies of anthropogenic effects on animals.

However, identification of foraging activity from bio-

logging tags has proven a sometimes difficult task. Studies

have focused on metrics such as jaw opening, stomach

temperature, and head or body acceleration with mixed

success (Ancel et al. 1997; Goldbogen et al. 2006; Liebsch

et al. 2007; Moreau et al. 2009; Hanuise et al. 2010; Vivi-

ant et al. 2010; Kokubun et al. 2011; Gr€unew€alder et al.

2012; Simon et al. 2012; Gallon et al. 2013; Owen et al.

2016). One group of animals that has had proven success

in the identification of foraging behavior from tag data

are the rorqual whales, which feed by a stereotyped, extre-

mely large kinematic event that is identifiable in tag sen-

sor data (Goldbogen et al. 2006, 2013a,b; Goldbogen

2010; Simon et al. 2012; Owen et al. 2016).

Multisensor tags have been extensively used in the study

of the behavior of marine mammals (Johnson and Tyack

2003; Johnson et al. 2009), animals that spend most of their

lives below the surface of the ocean where direct observa-

tions cannot be made. Baleen whales (Mysticeti) are among

the largest animals in the world, yet they feed on some of

the smallest, such as krill and other zooplankton. By feed-

ing at the bottom of the food web, they are able to reap the

benefit of greater biomass available for consumption, which

allows them to obtain their large size (Werth 2000). In

order to accomplish the task of consuming vastly smaller

prey, they employ a method of filter feeding, using large

baleen plates to sift through the water for food (Brodie

1977; Pivorunas 1979; Werth 2001, 2013). Rorquals

(Balaenopteridae), some species of which represent the lar-

gest baleen whales, capture their prey by a method of inter-

mittent filter feeding called lunge feeding (Brodie 1977;

Pivorunas 1979; Werth 2001, 2013).

During a lunge, a whale accelerates rapidly toward its

prey, opens its mouth to almost 90 degrees, causing flow-

induced pressure that expands the ventral throat pouch

around a large volume of prey-laden water (Orton and

Brodie 1987) and causes a rapid deceleration. After the

jaws close around the engulfed water mass, the distended

ventral pouch is then depressed, forcing the water past

the baleen plates to filter the suspended food items

(Pivorunas 1979; Kawamura 1980). The rapid acceleration

followed by a sudden deceleration gives lunge feeding a

kinematic signature that can be easily identified in tag

sensor data (Goldbogen et al. 2006).

Until recently, data on lunge-feeding behavior and

kinematics were restricted to limited surface observations

(Andrews 1909; Watkins and Schevill 1979; Watkins

1981) or were inferred from anatomical dissections

(Goldbogen 2010). However, the advent of high-resolu-

tion archival tags, incorporating movement and sound

sensors, now allows observations at depth as well as at

the surface (Johnson et al. 2009; Brown et al. 2013).

Most studies on lunge-feeding behavior have focused on

deep foraging dives (Goldbogen et al. 2006; Ware et al.

2011; Simon et al. 2012; Friedlaender et al. 2013), and

foraging near the sea surface remains poorly understood

(Doniol-Valcroze et al. 2011; Wiley et al. 2011; Goldbo-

gen et al. 2013a,b, 2014). When a movement tag

breaches the surface of water, the impact of the air–wa-
ter boundary causes a large spike in all tag sensors

which may affect digital signal processing (i.e., signal-to-

noise ratio). It is unclear whether surface lunge feeding

is similar to deep lunge feeding, and whether the kine-

matic signatures are equally detectable given the condi-

tional differences.

We developed a decision tree-based algorithm for auto-

matic detection of lunge-feeding behavior, both at the

surface and at depth, using tag data collected from fin

whales, Balaenoptera physalus, a large rorqual whale. We

identified the sensor metrics that were most successful in

recognizing foraging events, the most effective data sam-

pling rates, and quantified the accuracy of the automated

detector based on manual observations of the data and

prior knowledge of the behavior. The automated feeding

detection method outlined here is applicable, with

informed modifications, to other feeding rorqual species.

It furthermore demonstrates the development of a

straightforward automatic behavioral detection method

that utilizes behavioral and kinematic knowledge of a spe-

cies. This type of approach proved extremely successful

and potentially provides a template for development and

modification to a wide variety of species and behaviors

across a range of ecosystems.

Materials and Methods

This study uses data from suction cup digital acoustic

recording tags (DTAG) attached to 19 feeding and non-

feeding fin whales from 2010 to 2013 in waters around

the Southern California Bight. The animals were tagged

as part of the Southern California Behavioral Response

Study (Southall et al. 2012). DTAGs are archival tags that

record acoustic data on two hydrophones, and movement

data using a pressure sensor and three-axis accelerometers

and magnetometers (Johnson and Tyack 2003). There

were four sensor sampling frequencies utilized in this pro-

ject for the movement sensors: 50, 200, 250, and 500 Hz

(Table 1), these sampling rates were used to split the data

into low-frequency (50 Hz; LF) and high-frequency (200–
500 Hz; HF) sampled data. In addition, lunges occurred

at all depths, with a split in depth distribution at 30 m,

providing a cutoff to distinguish between shallow and

deep feeding.
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Several variables were derived from the collected DTAG

data that were used to help define the kinematic patterns

of feeding. In previous studies, LF flow noise from tag

hydrophones has been used as an estimate of the speed of

the tagged animal (Miller et al. 2004; Goldbogen et al.

2006, 2008; Simon et al. 2012). In this study, the LF flow

noise was calculated as the root-mean-square sound pres-

sure in the 66–94 Hz band, measured five times a second

(5 Hz). The flow noise was then used as a proxy for the

relative speed of each animal throughout the deployment,

with no correction derived from kinematic factors to

adjust to actual speed estimates.

The acceleration rate, or jerk, was also calculated for

each whale’s tagging record. The jerk was computed as

the norm of the difference of successive accelerometer

samples for all three axes of the accelerometer (Miller

et al. 2004; Simon et al. 2012; Ydesen et al. 2014). The

resulting value is the normalized jerk between consecutive

acceleration samples and is given in units of m/s3. Jerk is

a useful indicator of fast movements of a tagged whale

because it expresses the rapid changes in orientation and

acceleration while removing the slowly changing mean

orientation.

Using depth (meters), roll (degrees), and jerk, taken at

each tag’s sampling rate, in addition to flow noise, each

whale’s tag record was manually examined and the time

of each lunge marked. Although there was no direct

visual confirmation of lunges, either at depth or the sur-

face, previous studies have inferred the presence of lunge

feeding in multisensor tag data based on the known kine-

matics of how lunge feeding occurs in rorquals

(Goldbogen et al. 2006; Simon et al. 2012; Owen et al.

2016). The rapid acceleration of a whale toward a prey

patch, and then deceleration as it opens its jaws, is repre-

sented in the tag data as an increase and then subsequent

drop in flow noise, a sharp spike and then drop in the

jerk signal, and often a significant roll (Goldbogen et al.

2006) (Figs. 1, 2). While only deep feeding events have

previously been quantified in fin whale tag data, a very

similar lunge pattern was observed in surface periods of

tag data, indicating feeding activity (Figs. 1, 2).

Once the times were marked for all of the lunges iden-

tified in each whale’s tag record, an automated detector

was designed in MATLAB (MATLAB Release R2013b;

The MathWorks, Inc. Natick, MA) using the three vari-

ables (flow noise, jerk, and roll) and the observed features

of lunging to automatically identify lunge events (detector

to be obtained from the authors upon request). A deci-

sion tree method was utilized in this study, with thresh-

olds defined based on detailed knowledge of the species

and behavior (Goldbogen et al. 2006). More complex

techniques, such as fast Fourier transforms (Watanabe

et al. 2005) and machine learning methods (Gr€unew€alder

et al. 2012; Nathan et al. 2012; Gao et al. 2013), have

been utilized to identify behaviors, but other studies have

found that simple rules can define expected locomotion

patterns within and across species (Lagarde et al. 2008;

Shepard et al. 2008; Moreau et al. 2009; Owen et al.

2016).

The lunge times identified by the program were consid-

ered correct if they were within 10 sec of a manually

selected lunge, and the true-positive (TP) and false-
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Figure 1. The depth, roll, flow noise, and jerk of a shallow and deep lunge from a whale tagged with a low-frequency sampled tag.
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positive (FP) detection rates were calculated. The TP rate

was calculated as the proportion of automated detections

that were correctly identified as lunge events, as defined

by the manually selected lunges. The FP rate was calcu-

lated as the proportion of automated detections that were

incorrectly identified as lunges when no feeding activity

occurred. In comparing the detection rates of each

method, a preference was placed on reducing FPs over

increasing TPs, as incorrectly identifying an animal as

feeding when there is no feeding present was deemed less

desirable than missing individual feeding events. When

feeding rates are utilized in energetic or behavior analysis,

the data are often grouped into “feeding” versus “non-

feeding” periods. While missing several lunges during a

feeding period will not change this grouping, and will

likely have little effect on any energetic rate calculations, a

misidentified lunge could misplace an entire dive or time

period into a feeding category. This would have a larger

affect on the results than a slightly reduced feeding rate.

Multiple combinations of detection thresholds were

tested for both shallow and deep lunges, and the TP and

FP rates used to compare their efficacy. Based on these

repeated tests, an optimized automated detector was

designed that identifies both shallow and deep feeding

activity.

Detector design

The utilized method of lunge detection was very similar

for both deep and shallow lunging behaviors, with several

extra exclusion criteria applied to shallow lunging to

reduce additional FPs due to interaction of the tag with

the surface. In both methods, the data were binned into

one-second intervals and the mode of jerk, flow noise,

and roll, as well as the standard deviation (SD) of roll

were taken for each interval. Then, a simple peak detector

was used to detect all time bins with the mode of flow

noise and jerk, or SD of roll, above a chosen percentage

of the rest of the data, 22% for deep lunges and 16% for

shallow lunges. Large whales cannot be restrained during

tag deployment, so tag placement is often inconsistent,

and the farther the placement is away from the body site

of the desired activity (in this case the head) the lower

the detection signal will be in the data. Therefore, a detec-

tion percentage was used instead of an absolute threshold

in order to detect peaks in the data.

For continuous sequences of peaks, the maximum

value in the sequence was chosen as the actual peak. For

shallow lunges, the maximums of the jerk and flow noise

that had sequences of less than 2 sec were removed. The

bottom percentages of jerk mode were then selected with

a threshold of 32% for shallow data and 66% for deep

data. The first time bin of these sequences was chosen as

the time for a drop in jerk.

A process of elimination was applied to every detected

peak for each variable to determine which ones repre-

sented lunging activity (Table 2). There was generally a

greater roll observed in shallow feeding; therefore, at

every selected maximum peak in roll SD in shallow detec-

tions, the program checked for three or more consecutive
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Figure 2. The depth, roll, flow noise, and jerk of a shallow and deep lunge from a whale tagged with a high-frequency sampled tag.
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instances of roll mode exceeding 20° in the 3 sec on

either side of the roll SD peak. All roll SD peaks that did

not meet this criterion were removed from the detections.

The time cues of flow noise and jerk peaks were com-

pared, and those that were within 5 sec of each other

were kept. These chosen time cues were then compared

to the roll SD peaks, and those within 10 sec of each

other were kept, as roll tends to be more offset from the

acceleration peak. The peaks in flow noise were then

tested for a subsequent drop that occurs 8–12 sec after

the peak and indicate the opening of the mouth and

expansion of the buccal pouch. A drop of 15 dB in flow

noise during deep feeding events, and 10 dB drop in shal-

low feeding, was necessary to consider the detection of a

possible lunge.

These selected detections were then tested for a mini-

mum jerk signal within 15 sec of the peak. During surfac-

ings, the tag breaking the surface of the water leads to

spikes in the jerk data that were often chosen by the peak

finders. In order to avoid FPs caused by these surfacings,

all jerk minimums that also had a jerk peak within

�4 sec were removed, as these would indicate a drop

swifter than that seen during lunge feeding.

Lunge-feeding whales require a minimum amount of

time for processing the engulfed water after a lunge

before they are capable of lunging again. Goldbogen et al.

(2006) found an interlunge interval of 44.5 � 19.1 sec

between speed maxima in feeding fin whales. Here, any

detections that were within 15 sec of each other were

considered duplicates, and only the last detection kept.

The peak detections that fulfilled all of these criteria for

shallow and deep data were considered lunges, and the

time of the peak in flow noise was taken as the lunge

time.

In this study, we attempted to verify the performance

of the automated detector against the presence of true

lunges as accurately as possible. Manual lunge detecting

can be problematic due to highly variable signal types,

noise, and combinations as well as human variables such

as cognitive load, attention, and fatigue. In order to

reduce the variables present under human detection, we

verified manual auditing against automated detection to

identify both obvious “misses” and more ambivalent

events. In cases where a reviewer was unable to confi-

dently discount a lunge, we counted the event as a TP.

This practice limits the variable of human error by codi-

fying objective criteria and improving identification fide-

lity. This objective application of impartial criteria is one

of the advantages of automated event detection. In cases

of questionable events, an automated method applies the

same criteria in every case, whereas a human auditor

often employs an unavoidable shifting baseline of

comparison as they scan through the data.

Results

The designed lunge detector was able to identify lunges

both at depth and near the surface. The performance of

the lunge detector is reported in Table 1. The combined

HF and LF data for both shallow and deep lunges had a

total TP rate ranging from 71.4 to 100% accurate detec-

tion of lunges. The FP rate for all combined lunges ran-

ged from 0 to 100%. There were two 100% FP rates

(Whale 5 and Whale 9; Table 1), which considerably skew

the detection rates when they are averaged across animals.

These 100% FP rates are in animals with no feeding in

the entire tag record. This means that even a single FP

will produce a rate of 100%. When looking at the actual

numbers of detected lunges in these nonfeeding whales,

there are only 5 and 7 lunges detected in each of the tag

records (Table 3). This is a relatively low number of false

detections for multiple hours of tag data. There is a third

animal (Whale 10) with no lunges, for which the program

correctly recognizes the lack of feeding. Therefore, it is

still possible for the lunge detector to perform accurately

when there are no feeding events in the data. In order to

more correctly represent the performance of the detector,

these two FP rates are removed and an adjusted rate pre-

sented (Table 1). For the rest of the manuscript, all FP

rates are reported as an adjusted average; however, all full

FP averages are reported in Table 1.

There was a split of tag sampling frequencies, with 8

LF and 11 HF tag deployments. The total TP rate of the

LF tags averaged 92.1% with an SD of 8.6 and 92.3% with

an SD of 8.8% for HF tags, extremely similar perfor-

mances. However, when the adjusted FP rates are com-

pared, the LF tags average 24.3% accuracy with an SD of

33.1%, while the HF tags average 17.8% with an SD of

14.6% (Table 1).

Table 2. Decision table describing the program selection criteria that

were used to automatically define feeding activity.

Deep and shallow

Shallow

Jerk, flow noise, SD roll peak detector

Shallow: 16% hi, 32% lo; Deep: 22% hi, 66% lo

Three seconds or more of roll mode >20° within 3 sec of

SD roll peak

Flow noise and jerk peaks ≤5 sec apart

Flow noise and SD roll peaks ≤10 sec apart

Flow noise drop within 8–12 seconds after peak

Shallow: 10 dB; Deep: 15 dB drop

Jerk minimum ≤15 sec after jerk peak

No Jerk peak within �4 sec of minimum

If >1 detection in 20 sec remove all but final

Dark gray criteria were used to define all lunges, while light gray were

used only for shallow data.
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When looking at the absolute numbers of false detec-

tions, the LF tags have larger variability in inaccurately

identified lunges, as well as a larger absolute numbers of

false detections, with three animals (Whales 2, 6, 7, and

8; Table 3) having 13 or more false detections, while the

HF data have a maximum of 10 FPs per whale (Whale 13

and 19; Table 3). These differences illustrate the greater

variability in the performance of the detector for LF tags.

When the lunge detections are separated into shallow

and deep detections, there are 11 shallow lunging animals

and nine deep lunging animals, with four animals feeding

both shallow and deep. Except for Whale 2, which had 24

shallow detections, all animals with no shallow lunges had

low (one to eight detections) or no false detections (one

LF whale three HF whales) (Table 3). With the removal

of animals with no shallow lunges, the TP detection rates

are 89.7 � 10.4% with an adjusted FP of 30.7 � 27.1%,

with the HF tags giving the best shallow lunging detector

performance.

Ten animals had no deep feeding activity in their tag

records. The detector incorrectly identified lunges in only

three of these, with an absolute number of false detections

ranging from one to seven (Table 3). For the remaining

seven whales, the detector accurately identified the lack of

feeding activity. With the nonfeeding animals removed,

the TP detection rate is 94.9 � 5.4% with a FP rate of

4.6 � 4.7% (Table 1). While the deep and shallow

detectors have relatively similar TP rates, the discrepan-

cies in the FPs highlight the added difficulty of lunge

detection near the surface.

When the manually selected data were secondarily

reviewed against the automated detector, there was a

ubiquitous increase in TP and decrease in FP rates, with

an overall TP rate of 92.8 � 6.5% and a FP rate of

9.5 � 12.1% (Table 4). While the increase in TP rate was

modest, there was a sharp decrease in the FP rate as

lunges that were ambiguous, often due to a low signal-to-

noise ratio, were marked correct. This effect was most

dramatic in shallow lunging activity (Table 4). The largest

of these differences was seen in the LF detector perfor-

mance, with most of the difference driven by Whale 2,

with a decrease in the FP rate from 96.8 to 38.7%. Previ-

ously there was only one detected lunge in the entire

record (Table 5). This number was greatly increased with

secondary evaluation, when the reviewer could not con-

clusively determine whether the signals represented feed-

ing activity due to high data noise.

Discussion

Method performance

We have demonstrated here an extremely accurate auto-

mated feeding detector for fin whales using a decision

Table 3. The absolute numbers of manually detected, automatically detected, and correctly automatically detected lunges.

Category Whale

Sampling

rate (Hz)

Shallow Deep Total lunges

Lunges

Detected

lunges

Correctly

detected

lunges Lunges

Detected

lunges

Correctly

detected

lunges Lunges

Detected

lunges

Correctly

detected

lunges

LF 1 50 16 19 12 13 11 11 29 30 23

2 50 1 24 1 0 7 0 1 31 1

3 50 0 1 0 68 68 68 68 69 68

4 50 0 0 0 46 41 41 46 41 41

5 50 0 5 0 0 0 0 0 5 0

6 50 28 41 21 17 17 16 45 58 37

7 50 44 55 42 1 1 1 45 56 43

8 50 0 8 0 175 187 172 175 195 172

HF 9 200 0 3 0 0 4 0 0 7 0

10 200 0 0 0 0 0 0 0 0 0

11 200 0 0 0 42 43 40 42 43 40

12 500 0 0 0 73 79 73 73 79 73

13 500 11 21 11 0 0 0 11 21 11

14 500 85 87 79 0 0 0 85 87 79

15 200 65 68 59 0 0 0 65 68 59

16 500 45 49 44 0 0 0 45 49 44

17 500 7 8 5 0 0 0 7 8 5

18 250 51 53 45 0 1 0 51 54 45

19 500 13 13 13 73 78 68 86 91 81

The totals are shown for shallow and deep feeding, as well as the entire tag record of each animal.
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tree algorithm. The accuracy of the detector does vary

with different factors, including depth of feeding and

sampling frequency of the tag sensors. There is also vari-

ability across individuals in the signal-to-noise ratio,

which is likely due to differences in tag placement on the

animal, as well as physiological or behavioral differences

between animals. These are factors that must be overcome

regardless of the method used in behavioral detection.

In our study, shallow feeding had a higher FP rate than

deep feeding. When an animal approaches the surface,

they encounter additional drag forces associated with

waves created at the air–sea interface, called wave drag

(Hertel 1966), in addition to reduced maneuvering room

imposed by the surface barrier. These differences necessi-

tate changes in the kinematics of lunge-feeding behavior,

thus changing the detection of near-surface feeding.

Ambient noise levels also increase with proximity to the

surface, with strong wind speed dependence (Urick 1984).

This increases the background noise present on the tag

hydrophones, making flow noise-based speed estimates

near the surface less accurate as well as decreasing the sig-

nal-to-noise ratio of the lunge signal. There is further

interference of the tag sensors with the surface of the

water when the unit breaks the surface, either during

breaths or feeding activity. This abrupt density transition,

as well as the break in surface tension, creates large spikes

in the accelerometer, hydrophone, and other tag sensors,

confounding lunge identification which depends on detec-

tion of peaks in the data from these sensors.

We have shown here that while they are not as easily

or accurately identifiable as deep lunges, fin whale surface

feeding is clearly evident in movement sensor data

(Figs. 1, 2). Owen et al. (2016) also used a simple set of

decision rules to successfully detect surface lunge feeding

in DTAG data from humpback whales, another rorqual

species. They utilized a novel parameter, excess x-accelera-

tion, to represent the forward acceleration of the animal

regardless of pitch angle and obtained a 70% detection

rate of surface lunging (Owen et al. 2016). Their tag

accelerometer data were sampled at 50 Hz and then

downsampled to 5 Hz during calibration (Owen et al.

2016). In our study, we found that HF sampled sensors

reduce the difficulty in identifying surface feeding in tag

records with high data variability or noise. In the method

we utilize, this difference is almost entirely driven by the

only acceleration derived metric, jerk. A higher sampling

rate allows for a much higher absolute jerk signal (i.e.,

higher resolution in changes in acceleration) (Figs. 1, 2).

This larger value means that slower acceleration changes

from activity such as fluking are not mistaken for lunges

in HF tags, providing a much clearer jerk signal and more

accurate detector performance.

Table 5. The absolute numbers of manually detected, automatically detected, and correctly automatically detected lunges for the secondary

manual verification of lunges.

Category Whale

Sampling

rate (Hz)

Shallow Deep Total lunges

Lunges

Detected

lunges

Correctly

detected

lunges Lunges

Detected

lunges

Correctly

detected

lunges Lunges

Detected

lunges

Correctly

detected lunges

LF 1 50 23 19 19 13 11 11 36 30 30

2 50 13 24 13 6 7 6 20 31 19

3 50 0 1 0 68 68 68 68 69 68

4 50 0 0 0 46 41 41 46 41 41

5 50 0 5 0 0 0 0 0 5 0

6 50 37 41 30 17 17 16 54 58 46

7 50 47 55 45 1 1 1 48 56 46

8 50 0 8 0 189 187 186 189 195 186

HF 9 200 0 3 0 0 4 0 0 7 0

10 200 0 0 0 0 0 0 0 0 0

11 200 0 0 0 43 43 41 43 43 41

12 500 0 0 0 75 79 75 75 79 75

13 500 15 21 14 0 0 0 15 21 14

14 500 91 87 85 0 0 0 91 87 85

15 200 70 68 64 0 0 0 70 68 64

16 500 50 49 49 0 0 0 50 49 49

17 500 9 8 7 0 0 0 9 8 7

18 250 56 53 50 1 1 1 57 54 51

19 500 13 13 13 83 78 78 96 91 91

The totals are shown for shallow and deep feeding, as well as the entire tag record of each animal.
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One of the potential limitations of an automated detec-

tor that finds peaks by taking an upper percentage of the

data is that it will provide a high number of FPs when

there is no feeding present in the data, cueing instead of

the next largest signal in the record. HF sampling allows

for enough resolving power to greatly reduce this issue.

This effect will likely be more pronounced in smaller ani-

mals, whose movements are short and quick, and may

otherwise be aliased in LF sampled sensors. Accelerometer

sampling frequency has been shown to be extremely

important for correct behavioral categorization in fish

tags, with increased frequencies (>100 Hz) giving the

most accurate activity classification (Broell et al. 2013).

The large reduction in the FP rate of Whale 2 likely

represents an example of a tag placement or attachment

that was not conducive to feeding detection. The program

identified a large number of lunges where the manual

auditor had originally marked only one. Upon secondary

evaluation of the manual detection, the data were

ambiguous due to a small signal-to-noise ratio, with

many spikes in the signals that made lunge identification

extremely difficult. These spikes were likely the result of

either poor tag orientation or inadequate attachment

causing constant jostling of the tag and noise in the sen-

sors. Similar signal noise was often found in the final

minutes of a deployment, when the tags began to detach

from the animal.

The specific location of movement tags on an animal’s

body impacts what behaviors can be distinguished from

the sensors (Shepard et al. 2008; Gleiss et al. 2010;

O’Toole et al. 2011; Brown et al. 2013). In the case of

lunge-feeding rorqual whales, tag placement away from

the caudal region will reduce the interference of fluking

acceleration signals in lunge detection. It has also been

shown that consistent tag placement between individuals

greatly improves the signal-to-noise ratio and minimizes

interpretation errors (Shepard et al. 2008; Brown et al.

2013). While it is difficult to precisely attach bio-logging

tags on large species that cannot be handled during

deployment, tag positioning should be carefully consid-

ered when studying other species. However, placement

issues will make behavioral detection difficult whether it

is done manually or by automation.

In this study, we wished to quantify the performance

of our automated method by comparing it to the identi-

fication of true lunges in the data. There is currently no

completely unbiased method of identifying feeding in

rorqual species, as there is no way to visually observe the

animals during the entirety of the tag deployment. We

attempted to reduce human variables such as cognitive

load, attention, and fatigue that might otherwise skew

the TP detections by secondarily evaluating the manual

selection criteria. With no current method of

unequivocally determining the presence or absence of

lunge activity, we are instead evaluating the ability of the

automated method to correctly apply the selection crite-

ria and identify feeding events as accurately as possible.

The increased consistency in the application of detection

criteria is evident in the overall increase in TP and

decrease in FP detection rates across all animals, depths,

and sampling frequencies when they were subjected to

this secondary evaluation (Tables 1, 4). This improve-

ment in detection rates was due to two factors: uniform

application of selection criteria across ambiguous signals

when signal-to-noise ratio was low, and reduction in the

number of “misses” due to human factors.

Applications and broader context

Using fin whale foraging as a model system, we have

developed an extremely effective method of decision tree-

based automated feeding identification in movement tag

data. Automation of the classification of movement tag

data into activity logs is an extremely important goal in

bio-logging studies for a variety of reasons. There has

been a dramatic rise in the absolute number of movement

tags deployed, and the number of species they have been

used on, with 125 animal species carrying accelerometer

tags as of 2013 (Brown et al. 2013). Animal movement

tags generate large amounts of data, from hours to days

of multiple sensor streams. Development of automated

detection methods dramatically decreases the data analysis

time necessary to identify behavioral and ecological

energy budgets from these types of tag data. Automation

of activity recognition also requires standardization of

detection methods for each behavioral type which is

essential for consistency and cross-comparability of stud-

ies, as well as providing a quantifiable error rate.

In studies of anthropogenic effects on animal popula-

tions, identification of vital rates, especially feeding, is

extremely important to quantifying human impacts on

individuals and populations. Multisensor tags are particu-

larly suited to this type of study, as they allow for remote

observations of behavior without direct human influence

past the point of deployment. In cases where accurate

identification of activity is extremely important, this

method can easily be customized to bring up an accuracy

check of detected behavioral events. In this way, a human

user could examine figures of each marked behavior and

determine whether it was correctly identified, further

improving the precision of the method. When kinematic

tag data are combined with other tag data, such as light

levels, temperature, and GPS position, behaviors can be

placed in broader ecological contexts (Brown et al. 2013).

Expansion of this technique to other behavioral modes

such as resting, social interaction, travel, etc. would allow
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for a more complete classification of the behavioral ecol-

ogy, and energy budgets of a subject species, and will ulti-

mately greatly improve quantification of the

anthropogenic effects impacting it.

Regardless of the method used, automated feeding and

behavioral detection opens up the possibility of in situ

activity counters in next-generation, long-term tag designs,

providing real-time or long-term ethograms that may more

accurately inform researchers of feeding rates or other

behaviors that may last beyond the duration of current

tags. This would especially benefit species that are most sui-

ted to bio-logging tag studies, those that are remote or

inaccessible such as marine, avian, or far-ranging species.

In these cases, the deployment and recovery of the tag is

the limiting step. If activity counters can be developed for

each species, then behavioral budgets can be calculated on

board and remotely transmitted via acoustic or satellite

telemetry to researchers. This would increase the practical

longevity of tagging records, as it would reduce the impor-

tance of recovering deployed tags, given that the data

would be preserved in the event of tag loss or destruction.

In our study, we have demonstrated the effectiveness of

a simple decision tree-based algorithm to identify feeding

activity in multisensor tag data. Both automated and

manual activity detection methods come with advantages

and disadvantages. Here, we combine the advantages of

both methods, using selection criteria based on observa-

tions by a skilled interpreter of expected kinematic pat-

terns, and then applying these criteria in a consistent

manner across all signal types and animals in our study.

While other more complex methods of detection have

been used previously, such as fast Fourier transform

(Watanabe et al. 2005), support vector machines

(Gr€unew€alder et al. 2012; Nathan et al. 2012; Gao et al.

2013; Bidder et al. 2014), and artificial neural networks

(Nathan et al. 2012), many other studies have found that

simple rules can successfully define expected behavioral

signals in tag data (Lagarde et al. 2008; Shepard et al.

2008; Moreau et al. 2009; Broell et al. 2013; Gallon et al.

2013; Watanabe and Takahashi 2013). Fully or partially

supervised machine learning techniques require a high

level of computational and programming proficiency and

are often performed under “black box” conditions. How-

ever, they can be used in a variety of situations with

sometimes very little knowledge of the underlying physi-

ology and behavior of the species (Sakamoto et al. 2009).

Decision tree or threshold-based methods such as we

present here require much greater baseline understanding

of the study species and behavior. The analysis cannot be

performed without a significant prior knowledge of the

species, the kinematics of the desired behavior, and a

working familiarity with the signatures of the behaviors

in the tag data. However, given this knowledge, decision

tree methods then employ a basic set of selection rules

that define an expected behavior. These set of simple,

defined criteria mean they do not require a high level of

programming skill and are therefore simple to implement

and are readily accessible to a greater number of research-

ers. In some cases, the data and behavior are straightfor-

ward enough that one or two parameter thresholds can

be used to answer the study question (Lagarde et al.

2008; Broell et al. 2013). In this study, the interaction of

the tag with the surface meant a larger number of deci-

sion rules were needed to exclude these surfacing events

from the FPs.

Our automated detection algorithm is likely modifi-

able to other whale species that use the same lunge-feed-

ing mechanism. Owen et al. (2016) utilized a similar

method to the one we present here, providing a further

example of simple threshold-based models that are being

actively developed to enhance behavioral detection tech-

niques in marine mammals. A large number of rorqual

whales, including fin whales, are endangered species.

Accurate assessments of feeding rates and energetic

expenditure are essential to the successful maintenance

and recovery of these species. Future testing of this

method on similar behaviors and species would indicate

its relevance to a broader range of important conserva-

tion questions.

This method of observation-based automated activity

recognition is also modifiable for quick and accurate

detection of any repeated behavior that can be identi-

fied by defined thresholds in movement tag sensor data.

Bio-logging tags have already been used to research

species in every Earth biome. Miniaturization, as well

as increased sampling, battery, and storage capacity, will

add to the number of species for which movement tag

studies can be utilized. Our methods of activity detec-

tion provide a template that other researchers may use

for simple, observation-based automated behavioral

detection in all species, terrestrial and avian, in addition

to marine, with implications for expanded uses in

future studies.
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