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a  b  s  t  r  a  c  t

Many  species  of baleen  whales  were  hunted  to near  extinction  in  the  Southern  Hemisphere.  The  recovery
of these  populations  will  be affected  by  the availability  of  krill,  a  major  dietary  component,  in  the  Southern
Ocean.  We  combine  a novel  energetics  model  for baleen  whales  with  a state  dependent  foraging  model
to  explore  the  impacts  of  an expanding  krill fishery  on  baleen  whales.  We  parameterize  the model  for
blue whales,  but  with  simple  modifications  it could  be  applied  to most  baleen  whales.  We  predict  that
an  expanding  fishery  will  have  a small  but significant  impact  on  the blue  whale  population  through
decreased  birth  rates.  However,  spreading  the  catch  limit  throughout  the range  of  krill  can  reduce  these
effects. In  addition,  whales  may  be  able  to  reduce  these  impacts  through  adaptive  changes  in foraging
behavior.  The  relationship  between  krill abundance  and  blue  whale  foraging  and  reproductive  success
is  nonlinear,  such  that  larger  reductions  in  krill  biomass,  potentially  following  a loss of sea ice  due  to
climate  change,  could  have  a much  larger  negative  impact  on  the recovery  of  blue  whales.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Between 1904 and 1986, roughly 1.6 million rorqual whales
(belonging to the Family Balaenopteridae) were harvested in the
Southern Ocean, resulting in the decimation of the Southern
Hemisphere populations of blue (Balaenoptera musculus), fin (B.
physalus), sei (B. borealis), and humpback (Megaptera novaean-
gliae) whales (Mackintosh, 1965; Ballance et al., 2006; Mori and
Butterworth, 2006). The International Whaling Commission (IWC)
enacted a moratorium on all commercial whaling in 1986, although
bans on whaling had been enacted earlier for blue, fin and hump-
back whales (Mori and Butterworth, 2006). Population trends for
fin and sei whales are unknown, but for both blue and humpback
whales, which have not been harvested in the Southern Ocean since
1972 (when illegal Soviet operations stopped; Yablokov, 1994), the
trend is increasing. For humpback populations where data are avail-
able, steady increases have been documented (Bannister, 1994;
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Paterson et al., 1994; Ward et al., 2006). In fact, humpbacks are
listed as a species of least concern by the IUCN, while blue, fin and
sei whales remain endangered (Reilly et al., 2009). For blue whales,
Branch et al. (2004) estimate that the population has grown by
roughly 7% year−1, but the population was  so depleted that it is
still less than 1% of the pre-exploitation level.

The continued recovery of rorquals in the Southern Hemisphere
will depend in part on the availability of their prey. Most rorqual
species feed seasonally in the Southern Ocean, then migrate long
distances to temperate or tropical latitudes to mate and reproduce
(Mackintosh, 1965). During the breeding period, it is believed
that whales live primarily off energy reserves accumulated during
the shortened feeding season because whales that were caught
leaving the feeding grounds typically contained large amounts of
blubber, while those caught entering the feeding grounds were
considerably leaner (Lockyer, 2007). In addition, stomach analysis
of whales caught outside the Southern Ocean often showed little or
no food in their stomachs (Lockyer, 1981). Therefore, survival and
successful reproduction during the overwinter breeding period
will be affected by the level of energy reserves acquired during the
feeding season in the Southern Ocean, which will be affected by
the availability of prey. In fact, it has been shown that for southern
right whales (Eubalaena australis) that breed off Argentina, calving
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success is positively correlated with a proxy for prey abundance
in an important summer feeding area around the island of South
Georgia in the Southern Ocean (Leaper et al., 2006).

Baleen whales that feed in the Southern Ocean eat pre-
dominantly Antarctic krill, Euphausia superba (henceforth krill;
Kawamura, 1980), and there is concern that a changing ecosystem
in response to global warming, combined with an expanding krill
fishery may  result in a considerable reduction in the biomass of
krill available to predators (Nicol and Foster, 2003). Many studies
have demonstrated a link between krill recruitment and seasonal
sea-ice extent off the west Antarctic Peninsula (Siegel and Loeb,
1995; Quetin and Ross, 2003; Wiedenmann et al., 2009). These
studies suggest that a decline in sea ice in this region may  result
in poor recruitment events, reducing biomass both locally and in
downstream regions like the Scotia Sea. Warmer sea temperatures
may  also affect krill biomass, since krill growth is temperature-
dependent (Wiedenmann et al., 2008).

While the effects of a loss of sea ice and a warming South-
ern Ocean on krill cannot be directly managed, the impacts may
be mitigated by adaptive changes in the management of the krill
fishery. The Southern Ocean krill fishery is managed by the Com-
mission for the Conservation of Antarctic Marine Living Resources
(CCAMLR), which has adopted an ecosystem-based, precautionary
approach towards the krill fishery (Constable, 2004). Annual catch
limits are currently set at roughly 10% of the estimated biomass in
the Atlantic, Pacific and Indian Ocean sectors of the Southern Ocean
(Croxall and Nicol, 2004; more details at www.ccamlr.org). The
intention of such catch limits is to limit the potential for ecosystem-
wide depletion of the krill, but there remains the potential for local
depletion. There is also some concern that recent advances in har-
vesting technology allow krill to be continuously pumped from the
water (Kawaguchi and Nicol, 2007), greatly increasing the likeli-
hood of severe local depletion.

CCAMLR has recognized the need to subdivide the precautionary
catch limit in the south Atlantic sector of the Southern Ocean into
small-scale management units (SSMUs) to minimize the impact
that the krill fishery has on krill predators (Hewitt et al., 2004).
There are currently five scenarios being explored for the alloca-
tion of catches among SSMUs. The first four are static, with catch
in a single SSMU proportional to (1) historical catch in that SSMU,
(2) predator demand, (3) total krill biomass, or (4) proportional to
krill biomass less predator demand. The fifth scenario is dynamic,
accounting for the potential variation of krill biomass from year to
year among SSMUs, and would be proportional to some ecosystem
index yet to be determined (Hewitt et al., 2004). These scenarios
are being explored via modelling, and no scenario has been imple-
mented to date (Hill et al., 2006).

Here, we explore how changes in krill biomass and patchiness
may  affect blue whales in the Southern Ocean. Specifically, we
ask what happens if the whales have evolved to exploit a par-
ticular landscape of krill, but an expanding krill fishery changes
this landscape? Although we develop the model specifically for
blue whales, with simple modifications it could be applied to other
whale species.

We focus on blue whales for two reasons. First, despite evidence
for population growth, the population size is still at critically low
levels (Branch et al., 2004). Second, blue whales have incredibly
high energetic demands, forcing them to feed on incredibly dense
krill aggregations (Croll et al., 2005). The commercial krill fishery
also targets the densest aggregations of krill to maximize profits
(Kawaguchi and Nicol, 2007; Kawaguchi and Candy, 2009), set-
ting up the potential for competition between blue whales and the
fishery.

We use state dependent life history theory, implemented by
stochastic dynamic programming (SDP; Mangel and Clark, 1988;
Houston and McNamara, 1999; Clark and Mangel, 2000) to answer

Fig. 1. Map  of the South Atlantic sector of the Southern Ocean, with locations and
approximate distances between the assumed patches used in the model.

this question. SDP models have already been used to address eco-
logical questions in the Southern Ocean, such as the effects of
changes in krill abundance and patchiness on the foraging and
breeding success of penguins (Cresswell et al., 2008), and the effects
of predation on krill behavior and life-history (e.g. Alonzo and
Mangel, 2001; Willis, 2007).

2. Methods

Our model has three components; (1) the krill landscape, (2) the
physiological model for blue whales, and (3) the foraging model
for blue whales. In determining the level of biological detail for
each model component we  consider the tradeoff between detail (i.e.
complexity) and model tractability and understandability (Hilborn
and Mangel, 1997).

2.1. The krill landscape

There is a large amount of information on the characteristics of
individual krill swarms (e.g. size, density), and their distribution
in space and time (Miller and Hampton, 1989; Sprong and Schalk,
1992; Cox et al., 2009; Tarling et al., 2009; Klevjer et al., 2010). Our
goal in this paper is to present a framework for exploring changes
in krill abundance and patchiness on the foraging success of blue
whales. Therefore, incorporating all the complexities of krill aggre-
gations and their spatial distribution is beyond the scope of this
paper. Instead, we create a simplified model of krill in the South
Atlantic sector of the Southern Ocean. We select this area because it
is both the region of highest krill abundance (Atkinson et al., 2008)
and the region where the fishery currently operates (Kawaguchi
and Nicol, 2007). We  model krill swarms (dense aggregations of
individual krill) within areas of consistently above average swarm
frequency, called patches (Siegel and Kalinowski, 1994). Although
there are many areas where krill swarms concentrate, we only
consider three patches; one off the Antarctic Peninsula, one off
the South Orkney Islands, and one off the island of South Georgia
(Fig. 1). We  select these areas because they represent areas of high
krill density (Siegel, 2005) and also because the fishery consistently
operates in these areas on an annual basis (Kawaguchi and Nicol,
2007) within the South Atlantic sector of the Southern Ocean. In
Appendix A we  describe the details for constructing patches within
the model and justification for the patch parameters, but provide
a brief description here. Each patch is divided into a number of
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Fig. 2. Probability distribution for the swarm densities (kg m−3) found in each patch
(i.e. the probability of finding a swarm with a particular density, or p(c,j|t)). See
Appendix A for more details.

grids, or cells. Each cell within patch c will contain a swarm with
time-dependent probability p(c|t), and the probability that a cell
will have a swarm with the jth density (in kg m−3) is denoted by
p(c,j|t) (Fig. 2).

2.2. The physiological model

We  are interested in the foraging behavior of a whale throughout
the feeding season, and how these behaviors vary with physiolog-
ical state. For simplicity, we assume that energy is stored only as
blubber, and that during periods of starvation, the whale meets its
energy requirements by breaking down stored blubber, and not
other tissues such as muscle (Brodie, 1975; Noren and Mangel,
2004). Although there are lipid reserves in other parts of the body
(Lockyer et al., 1985), assuming energy is only stored as blubber
makes calculations straightforward. To generate a range of differ-
ent energy stores for a whale of length L (in m),  we estimate the
average mass W̄ (in kg) at that length (Lockyer, 1976)

W̄(L) = 4.6L3.05 (1)

According to Lockyer (1976),  an average blue whale is made up
primarily of muscle (39%), blubber (27%), bone (17%) and viscera
(12%), leaving 5% of unclassified tissue. To generate a range of
energy reserves for a whale of a given length, we assume that
as a whale’s blubber mass changes, the mass of its other tissues
remains constant. Therefore, a blue whale of length L will have on
average 0.73W̄(L)kg of non-blubber tissue. If 1 kg of blubber con-
tains u kJ of utilizable energy, a whale with X kJ of energy stored
will have a blubber mass of Wb = X/u, and a total mass W(X, L) =
Wb + 0.73W̄(L). For each length, we explore a range of X such that
the percent of body mass comprised of blubber is between 2 and
35%. This range extends lower than that reported by Lockyer (1976;
21–33%), but it allows us to explore the effects of extreme leanness
in whales. We  model lengths between, 20 and 30 m,  assuming that
whales mature at 23 m (Lockyer, 1981).

No direct metabolic estimates have been made for blue whales.
Therefore, we must extrapolate the allometric relationships for
mammalian metabolic costs well beyond the body masses used
to generate them. We  rely on the allometric relationships relat-
ing mass, W (in kg) to basal metabolic rate (BMR) and the cost of
transport (COT). The relationship between BMR  (in kJ day−1) and W

BMR  = 293.1W0.75 (2)

was developed by Kleiber (1975) using data on terrestrial mam-
mals. There is currently debate over whether the value of this

exponent is 0.75 (Sieg et al., 2009; White et al., 2009), but without
specific estimates for marine mammals we  use 0.75. Additionally,
there is debate over whether or not marine mammals have a higher
BMR than terrestrial mammals for a given mass. Leaper and Lavigne
(2007) reviewed the available evidence and concluded that there is
no statistical support for marine mammal  BMR  being higher than
that of terrestrial mammals. We therefore estimate BMR  from Eq.
(2), but explore the sensitivity of model results to higher values.

Williams (1999) provides a means for estimating the mass-
specific cost of transport (in kJ kg−1 km−1), COT. This analysis
includes data from a variety of marine mammals, all much smaller
than blue whales. COT includes maintenance costs, and is calculated
with

COT = 7.79W−0.29 (3)

Eqs. (2) and (3) allow us to calculate the costs of various activi-
ties of a whale. Within day t, a whale can engage in three distinct
activities: traveling, feeding, and resting. We define traveling as any
directed lateral movement within a patch or between patches, and
assume that if a whale moves to an area that contains a swarm,
it immediately finds the swarm (i.e. there is no additional time
spent searching). Feeding involves diving to the swarm, lunging at
the swarm and engulfing krill (done multiple times during a single
dive), followed by a return to the surface where the whale remains
for a short period recovering from the prolonged period of oxygen
deprivation. Resting is considered as any period where the whale
is not traveling or feeding.

To illustrate how we calculate the energetic costs, consider a
whale on some day t during some length of time � (we discuss
below the specifics about the behavioral decisions and how �
is determined). During this period, the whale spends some time
(in hours) moving (�m), feeding (�f), and resting (�r). The total
metabolic cost for the whale during this period is the sum of the
costs of these different activities. If a whale moves distance d (in
km), the cost of moving, Cm(d) (in kJ) is

Cm(d) = COT · W · d (4)

Blue whales travel at different speeds depending on their behavior,
moving slower when searching for food than when long-distance
transiting (Bailey et al., 2010). We  therefore set two different
speeds for movement within a patch, sc, and between patches, sc′
(Table 1). Given a particular s, �m = d/s. After moving d km,  if the
whale encounters a swarm of type j and feeds, it will have a max-
imum of � − �m hours to feed. The cost of feeding depends on the
number of lunges a whale makes during this period, which depends
on the volume that a whale can engulf in a single lunge, swarm
density, and the amount of time available for feeding. Lunge feed-
ing is energetically costly (Goldbogen et al., 2007). We  calculate
the energetic cost of engulfment during a single lunge Cg (in kJ)
using an unsteady hydrodynamic model (Potvin et al., 2009, 2010),
with engulfment simulated for different sized whales, integrating
morphological and kinematic data (Goldbogen et al., 2007, 2008,
2011). The energetic cost of engulfment scales allometrically with
body length as

Cg(L) = 0.00784L3.4 (5)

The cost of engulfment does not include maintenance costs, nor
does it include the acceleration phase prior to engulfment. Potvin
et al. (2009) suggest that a reasonable approximation for the ener-
getic cost of acceleration and engulfment is 2 Cg(L). Therefore,
assuming a whale makes ω lunges per hour, and spends �f hours
feeding, the cost of foraging Cf is

Cf (j, L, W,  �f ) = �f · ω · 2 · Cg + �f
24
˛f · BMR  (6)
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Table  1
Model parameters, values used in the model, descriptions, and sources where they exist. The distance to the breeding grounds (DB) is a rough approximation of the distance
from  the Scotia Sea to the hypothesized breeding area off southwest Africa (Branch et al., 2007). The movement speed is inflated from the maximum values reported in Mate
et  al. (1999), as such estimates are likely biased low due to the temporal resolution of the data.

Parameter Value Description Source

T 120 Days on the feeding grounds Lockyer (1981)
DB 5000 Distance (km) to breeding grounds
v 3200 Swarm volume (m3) Tarling et al. (2009)
z  0.9 Parameter controlling krill patchiness
sc 7 Movement speed within a patch (km h−1) Mate et al. (1999)
sc′ 10 Movement speed to a new patch (km h−1) Mate et al. (1999)
˛f 2.5 Feeding cost as a multiple of BMR
˛r 2 Resting cost as a multiple of BMR
�c 4 Clearance rate (h) of the forestomach Vikingsson (1997)
CD 9.29 × 106 Cost of calf development (kJ) Lockyer (1981)
CL 3.27 × 108 Lactation costs from birth to re-entering the feeding grounds Lockyer (1981)
� 2.88 Exponent relating forestomach capacity to length Modified from Vikingsson (1997)
A  0.8 Assimilation efficiency Costa and Williams (2000)
u 31,798 Utilizable energy (kJ kg−1) in blubber Lockyer (1981)
w  6276 Energy content of non-blubber tissue (kJ kg−1) Lockyer (1981)
� 4184 Energy content of krill (kJ kg−1) Lockyer (1981)
ω  20 Lunges made per hour during the overwinter period Croll et al. (2001)
� 0.002 Proportion of body mass consumed daily during the overwinter period

where ˛f scales BMR  to account for increased activity (Table 1).
We delay discussion of the calculation of �f until the discussion of
food intake. Given �m and �f, we estimate �r with � − �m − �f, and
estimate the cost of resting, Cr,

Cr(W, �r) = �r
24

·  ˛r · BMR  (7)

where ˛r scales BMR  to account for additional energy expendi-
ture, such as digestion, as BMR  is estimated for fasting animals
(Table 1). In addition, BMR  is estimated for thermo-neutral animals,
so this parameter could also be used to account for thermoreg-
ulation in cold waters (Kshatriya and Blake, 1988). However,
there is evidence that large marine mammals do not need to
increase metabolic activity to maintain homeothermy in polar
waters (Watts et al., 1993), so we do not account for thermoreg-
ulation separately here. The total cost a whale experiences during
this period Ctot(j,L,W,d,�f,�r) is then

Ctot(j, L, d, �f , �r) = Cm(d, W)  + Cf (j, L, W,  �f ) + Cr(W, �f ) (8)

Estimating the daily food intake of large whales remains a challenge
(see Reilly et al., 2004; Leaper and Lavigne, 2007 for reviews). Most
approaches (e.g. Innes et al., 1986; Croll et al., 2006; Barlow et al.,
2008) produce an estimate of the average daily intake, which is not
suitable for our purposes. Presumably, whales consume as much as
they can during an encounter to account for periods where no food
is found, so we are interested in the maximum daily intake for a
whale of a particular size. Baleen whales have a forestomach that
is believed to be used for mechanical grinding and storage of large
quantities of food. Food is initially stored in the forestomach and
gradually passed to the digestive stomach chamber (Vikingsson,
1997). Therefore, the storage capacity of the forestomach and the
rate at which it is emptied limit the maximum daily intake of baleen
whales. Vikingsson (1997) relates forestomach capacity,   (L) (in
kg) to length in fin whales by

 (L) = 0.47L2.36 (9)

The value of the exponent is similar to the exponent in the
length–mass relationship for fin whales (2.53; estimated by
Lockyer, 1976). Fin whales are leaner than blue whales for a given
length, so it is likely that the estimate is higher for blue whales.
We therefore adjust � = 2.88 to account for the difference between
the length-weight exponents for blue and fin whales. The clear-
ance rate of the forestomach is estimated to be between 3 and 6 h,
and Vikingsson (1997) notes that shorter rates are more likely. We
select a clearance rate, �c, of 4 h, but explore the effects of different

values on the results. The amount of time it takes a whale to fill
up the forestomach depends on the swarm density, ı(j) (kg m−3)
and the volume of water that can be engulfed in a single lunge, ˇ
(Goldbogen et al., 2009) and is

ˇ(L) = 0.0011L3.56 (10)

By itself, swarming is an antipredatory behavior (Hamilton, 1971),
but individual krill within a swarm exhibit evasive behaviors in
response to predators causing changes in swarm number, shape
and density (Hamner and Hamner, 2000; Cox et al., 2009). How-
ever, the net effect that a particular predator (e.g. a batch-feeding
whale compared to a penguin that targets individual krill) has on
swarm density and shape, and how such changes affect capture suc-
cess is unclear. We  assume that as a whale feeds the density of the
swarm remains the same but the total swarm biomass decreases
by ı(j)·ˇ(L) (i.e. krill do no scatter or concentrate). Therefore, the
time required to fill up the forestomach is

� (L) =  L
20 · ı(j) · ˇ(L)

(11)

For a maximum foraging period of �,  then the total number of times
the forestomach can be filled, n is

n 

⎧⎪⎨⎪⎩
�

� 
� ≥ �c

�

�c
� ≥ �c

(12)

If the whale is feeding on a low density patch such that the clearance
rate equals or exceeds the intake rate, then it can feed continuously,
and �f = �.  Alternatively, a whale feeding on a high density swarm
will fill the forestomach faster than it can clear it, and will spend
�f = n � hours actively foraging, and the remaining time will be
spent resting (digesting). If krill contain � kJ kg−1, the total energy
gained G during a feeding bout is

G(j, L, �f ) = n	 (L)A� (13)

where A (<1) is the assimilation efficiency (Table 1). Thus, a whale
that expends Ctot(j,L,W,d,�f,�r) while gaining G(j,L,�f) will have a
change in blubber mass, 
Wb of


Wb = G(j, L, �f ) − Ctot(j, L, W,  �f �r)
u

(14)
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2.3. The behavioral model

Lockyer (1981) suggests that on average baleen whales spend
approximately 120 days on the feeding ground. We  therefore
assume that the number of days spent on the feeding grounds, T, is
120 (entering in early December and leaving in late March; Lockyer,
1981; Brown and Lockyer, 1984). At the start of day T = 120, the
whale leaves the feeding ground and migrates some distance DB to
the breeding grounds. The future survival and reproductive success
depends on accumulated reserves. The amount of energy needed to
survive the breeding period depends on a number of factors, includ-
ing the distance to the breeding grounds, the amount of feeding that
occurs during the overwinter period, and whether or not the whale
is pregnant. In Appendix B we describe how we estimate the total
energetic costs during the overwinter period, denoted Cw(I), where
I is an indicator function that is 1 if the whale is pregnant and 0
otherwise.

Predation may  be an important source of mortality for baleen
whales, especially for calves (Corkeron and Connor, 1999), but we
found no estimates of the predation rate (or mortality rates from
other sources), so we only consider mortality resulting from star-
vation. The future expected survival and reproductive success for a
whale with reserves X(T) = x, denoted �(x), is

�(x)

{
0 x < Cw(I)
1 x ≥ Cw(I′)

1 + I x ≥ Cw(I)
(15)

Here, x ≥ Cw(I′) accounts for cases when a pregnant female does
not have enough energy to successfully nurse a calf, but can sur-
vive if the calf is abandoned. In such a case we assume the calf is
abandoned.

We  model the hourly foraging decisions of a whale, and an
outline of all of the sequential decisions made can be found in
Fig. 3. It is currently unknown how much feeding occurs at night.
Although blue whales have been observed feeding at night (Doniol-
Valcroze et al., 2011), other studies suggest little or no feeding at
night (Calambokidis et al., 2007; Oleson et al., 2007). For simplic-
ity we assume that blue whales only feed during daylight hours,
and model the foraging decisions between dawn (h = 1) and dusk
(h = H(t)). The length of daylight varies by day and latitude, and we
compute the patch-specific day length (in hours) using the equation
of Forsythe et al. (1995),  assuming that t = 1 and T = 120 corresponds
to December 1st and March 31st, respectively, and assuming a fixed
latitude for each patch (63◦S for the Antarctic Peninsula, 61◦ for the
South Orkneys, and 55◦S for South Georgia).

A whale that is located in cell i within patch c at the start of hour
h on day t moves some distance d in search of krill. The distance
traveled can either be within the current patch, dc, or some dis-
tance dc′ to another patch. For simplicity, we assume that whales
know the locations of the other patches, but not the locations of
individual swarms within a patch. If the whale remains in the cur-
rent patch, it travels dc in search of a swarm. If the whale moves
dc and encounters a swarm of type j, with probability p(j|i,c,dc,t), it
can reject the swarm and wait until the next time period to search
for a different swarm. The next time period refers to the new hour,
h′, and possibly new day, t′ depending on when the whale started
to search for krill and the time it took to travel dc (methods for cal-
culating t′ and h′ are shown in Table 2). If the whale feeds on the
swarm, it will continue to feed for the remainder of the day or until
the swarm is depleted, whichever comes first.

For days previous to T we define F(x,l,i,c,h,t) as the maximum
expected value of �(X(T)) for a whale in location i within patch c on
hour h of day t with reserves X(t) = x and length L(t) = l (Mangel and
Clark, 1988; Mangel and Ludwig, 1992; Houston and McNamara,
1999; Clark and Mangel, 2000). We  refer to F(x,l,i,c,h,t) as the fit-
ness of a whale, and we maximize it over the behavioral decisions

Fig. 3. Progression of decisions made in the model.

and physiological constraints detailed above. We  let Vc(x,l,i,c,dc,h,t)
denote the fitness value of staying in patch c and traveling dc in
search of food, and Vc′ (x,l,i,c,dc′ ,h,t) the fitness value of leaving the
patch and traveling some distance dc′ to another patch. Then

F(x, l, i, c, h, t) = max[Vc(x, l, i, c, dc, h, t), Vc′ (x, l, i, c, dc, h, t)]

(16)

Regardless of the decision to remain in or leave a patch, a whale may
encounter a swarm at the end of its journey, and it either feeds or
ignores the swarm and searches for another one. We  first consider
the fitness value of accepting (VA) and rejecting swarms (VR) for a
whale that remains in the current patch, then describe the modifi-
cations for a whale that leaves the patch. At the start of hour h on
day t, a whale in patch c moves dc km,  and finds a swarm of type j
with probability p(j|i,c,dc,t). If it rejects the swarm, then it will be in
cell of type j with a new level of reserves x′, and a new time h′ (>h)
and t′ (≥t; Table 2). The value of rejecting the patch is

VR(x, l, i, c, dc, h, t) = F(x′, l, i, c, h′, t′) (17)

where change in energy reserves, x′, is

x′ = x − Ctot(j, L, W,  d, �r) (18)

If the whale feeds on the patch, surplus energy will either be instan-
taneously allocated to energy reserves (and the whale will have
new reserves of x′′), or it will be allocated to growth in length (and
the whale will have a new length of l′′) where x′′ is

x′′ = x − Ctot(j, L, W,  d, �f , �r) + G(j, L, �f ) (19)

The change in mass is calculated using Eq (14), replacing the cost
of blubber production (u) with the cost of producing non-blubber
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Table  2
Example calculations of the new hour and day (h′) and (t′) and the daylight remaining (�) for a whale starting on hour h of day t that travels �m hours in search of krill. The
calculations are only shown for travel times that result in the journey ending during daylight the next day (t + 1). These equations can be easily extended to account for long
distance journeys that take days to complete. The notation [h + �m] indicates the rounding up of h + �m to the nearest integer.

Description Equations h′ t′ �

Journey ends during daylight of current day h + �m < H(t) [h + �m] t H(t) − h′

Journey ends at night of current day H(t) ≤ h + �m < 24 1 t + 1 0
Journey ends during daylight of next day 24 ≤ h + �m < H(t + 1) + 24 [h + �m − 24] t + 1 H(t + 1) − h′

tissue (w; Table 1), and the new length is calculated by rearranging
Eq. (1)

l′′ =
(
W + 
wb

4.6

)1/3.05

(20)

The value of accepting a swarm that is encountered is therefore

VA(x, l, i, c, dc, h, t)=max[F(x′, l, i, c, h′, t′), F(x, l′′, i, c, h′, t′)] (21)

Given the values for accepting and rejecting patches, the value of
staying in a patch is

Vc(x, l, i, c, dch, t) = max
dc

jmax∑
j=1

p(j|i, c, dc, t)[VA(x, l, i, c, dc, h, t),

VR(x, l, i, c, dc, h, t)] (22)

Calculating the value of leaving the current patch is very similar to
that of staying, except we maximize it over the different patches
and not travel distance, and the probability of finding food is inde-
pendent of the starting location and the distance traveled (p(c′,j|t)).
In addition, calculating VA and VR is nearly identical to Eqs. (17) and
(21), but now the whale is located in patch c′ instead of c. Thus, the
value of leaving the current patch is

Vc′ (x, l, i, c, dc′ , h, t) = max
c′

jmax∑
j=1

p(c′, j|t)[VA(x, l, i, c′, dc′h, t),

VR(x, l, i, c′, dc′ , h, t)] (23)

The optimal behaviors (how far to travel, which patch to occupy,
whether or not to accept an encountered swarm, and whether to
allocate surplus energy to growth in length or reserves; Fig. 3) are
determined by iterating backwards through time (from t = T to t = 0)
and solving for the suite of behaviors that maximize the fitness
given for the different states of the whale. This process is called the
backwards iteration.

2.4. Exploring the impacts of fishing

To explore the impacts of fishing-induced reductions in krill on
whales we use the forward iteration; a Monte Carlo simulation
in which individual whales are projected throughout the entire
feeding season, with daily behaviors determined by the optimal
behavior determined in the backwards iteration for the whale’s
current state (Mangel and Clark, 1988; Houston and McNamara,
1999; Clark and Mangel, 2000).

In the forward iteration, we model 900 pregnant whales
(where individuals are indexed by k) with random starting

length (L(k,t = 0)) that is uniformly distributed between 23 m and
30 m and energy reserves, X(k,0) are a truncated normal with
mean �x and standard deviation x and where the distribu-
tion for X(k,0) bounded by Xmin(L) and Xmax(L), with �x = 0.15
Xmax(L) and x = 0.25 �x (Xmin(L) and Xmax(L) correspond to the
energy reserves for a whale of length L with 2 and 35% of total
mass comprised of blubber). We  incorporate fishing by gener-
ating krill distributions and randomly removing swarms from
the patches until the catch limit is met, then re-estimating the
encounter probabilities. Because the catch limit set by CCAMLR
is approximately 10% of the estimated biomass, we  set the total
catch limit in the model to 10% of the unfished biomass, and
explore 4 fishing scenarios. In the first scenario, the catch is
distributed evenly among the patches, while in the other sce-
narios (2–4) the entire catch is removed from a single patch
(Table 3). These scenarios are run for different levels of krill
patchiness (Appendix A) to explore the possibility of the fishery
making krill swarms more clumped through the removal of entire
swarms.

The fishing scenarios assume the whales apply fixed behaviors
(based on the environmental conditions specified in the backwards
iteration) to a changing environment. However, it is possible that
whales may  respond to a changing environment either through
gradual changes in behavior across generations (evolution), or
by individual changes in behavior throughout a feeding season
(learning). We  therefore explored an additional scenario in which
the whales adapt to the changing environment. We accomplish
this by solving the backwards iteration using the probabilities
for the fishing scenarios shown in Table 3, such that the optimal
behaviors are solved for an environment with less krill. This model
run can be considered a “best case” in response to change, as
the whales have evolved the optimal response to that particular
landscape. The actual situation must be between these two limits
of no learning and immediately learning about krill biomass.

For all scenarios explored, we run the forward simulation 1000
times, and tabulate the number of successful births and adult deaths
that result in each iteration.

3. Results

The following results are for a clumped distribution of krill and
for the parameter values in Table 1. A calculation of COT for an
entire day of traveling at an assumed speed of 7.5 km h−1 using Eq.
(3) reveals that the cost of traveling (which includes maintenance
costs) is less than 3 × BMR. We  therefore constrain ˛r (the ratio of
resting to basal metabolic costs) below the minimum values shown
in Fig. 4.

Table 3
The initial and ending probabilities of finding a swarm in each patch (p(c|0) and p(c|T), respectively) under the different scenarios explored in the backwards and forward
iterations (with and without fishing and climate change).

Starting probability End probability
No fishing

End probability
Fishing in all patches

End probability
Fishing in one patch

Antarctic Peninsula 0.24 0.2 0.176 0.128
South  Orkneys 0.22 0.18 0.158 0.114
South  Georgia 0.2 0.16 0.14 0.1
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Fig. 4. The ratio of daily COT to BMR  in relations to length for whales with different
levels of energy reserves (and therefore mass). Daily COT is calculated assuming
whales travel at a speed of 7 km h−1.

3.1. Optimal behaviors

The behavioral decisions affect the energy reserves of a whale,
which determines the survival and reproductive success of the
whale during the overwinter period. The level of reserves needed to
survive and reproduce depend on how far the whale must migrate
to the breeding grounds, and also how much food is ingested there.
Both factors have a large effect on the critical level of reserves
needed, as increasing the migration distance and decreasing the
overwinter food intake result in more reserves needed when exit-
ing the feeding grounds to survive and reproduce (Fig. 5). For the

calculation of critical energy reserves, we relaxed the assumption
that whales mature at a length of 23 m,  and explored a wider range
of reserve levels to determine if it is even possible for whales
smaller than this threshold to have enough energy to survive
the overwinter period. Because mass increases with length to the
power 3.05 (Lockyer, 1976), smaller whales have much less mass
than larger whales. Therefore, the energy necessary to survive or
reproduce takes up a much greater proportion of overall mass in
smaller whales. The reserve threshold varies with the migration
distance and overwinter food intake, but whales below the maturity
size require between 35 and 45% of their total body mass to con-
sist of blubber. Such amounts are beyond those reported by Lockyer
(1976) and may  be too taxing physiologically for whales. For a 23 m
whale, the range is between approximately 28 and 40%. Values at
the lower end of this range are consistent with observed levels of
blubber, so the results suggest that the maturity threshold makes
sense for females in terms of plausible values of energy storage.

Whether or not a swarm of particular density is accepted or
rejected depends on a number of factors. Over the range of densi-
ties in our model (0.075–0.75 kg m−3), the mean rejection density
threshold is 0.11 kg m−3. In Fig. 6 we show the mean rejection
thresholds in relation to day (t), hour (h), and the proportion of
body mass comprised of blubber. We  predict:

(a) The rejection threshold density is dome-shaped with respect
to day within the feeding season, with higher density swarms
rejected more often in the middle of the season.

(b) Within a particular day, whales are more likely to feed on lower
swarm densities later in the day, as there is less time to search
for new swarms.

Fig. 5. Surface plots showing if whales of a certain length (m)  and energy reserves (the proportion of body mass comprised of blubber) have enough energy to successfully
reproduce (white region), survive (gray), or if they die during the overwinter period (black). The plots are created for three different distances to the breeding grounds
(DB = 2000, 5000 and 10,000 km)  and daily food intake on the breeding grounds (� = 0, 0.001, 0.003).
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(c) The threshold density decreases with respect to energy
reserves, as lean whales must gain more energy throughout the
feeding season and therefore select for higher density swarms.

The surplus energy from feeding on a swarm may  be either allo-
cated to growth in length or to increase existing reserves. Under the
current model, there is no value in growing in length under any con-
dition. The level of energy reserves determines fitness, so whales
must accrue sufficient energy to survive and reproduce. Because the
time period of the model is only 1 year, there is no incentive (future
fitness) for immature whales to reach the maturity size of 23 m.  To
explore when a whale is predicted to grow in length, we modified
the model to allow whales smaller than 23 m to become preg-
nant, but required that successful reproduction could only occur
at lengths ≥23 m.  Under this modification, a whale smaller than
the maturity threshold is predicted to grow earlier in the feeding
season, but only if it has sufficient reserves. The transition to switch
from growing in length to building energy reserves is knife-edged,
with the transition occurring later in the feeding season for larger
whales (in length) and for higher levels of energy reserves (Fig. 7).
For a given length and energy reserves, there reaches a point in the
season where the whale must begin to fatten. Given that reserve
allocation towards growth in length in the model is all or nothing
(Eq. (21)), it makes sense that the transition to grow in length is
knife-edged.

Because swarms are clumped, if a whale finds a swarm, it has a
high probability of finding another swarm in an adjacent cell. There-
fore, regardless of the patch, if a whale has found a swarm and is in
search of another (due to depleting the swarm or rejecting it), the
optimal behavior is to remain in the patch and move to an adjacent
cell (dc = 1). When whales are not in a cell that contains a swarm,
they will either move some distance within the patch, or move to
the new patch. In Fig. 8 we show the mean optimal distance moved
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Fig. 7. The decision to grow in length in relation to length and the proportion of
body mass made of blubber (denoted PB). The probability of growing in length is
calculated as the proportion of instances where the optimal allocation strategy is to
grow in length.

(in Fig. 8A–C the distance is averaged over movements within and
between patches whereas in Fig. 8D–F the distance is averaged over
only within patch movements) as a function of day, length, and
energy reserves. A similar dome-shaped pattern appears for day,
although the location of the peak is different (Fig. 8A and D). We
predict that smaller whales are more likely to make the long dis-
tance movements between patches (Fig. 8B), but within a patch,
we predict no difference between lengths (Fig. 8E). Whales with
extreme levels of energy reserves (both low and high) are more
likely to make long distance movements (Fig. 8C). Within a patch,
however, we predict that fat whales make shorter trips (Fig. 8F).

3.2. Daily food intake and energy expenditure

In the forward iteration we  calculate the average daily food
intake, energy expenditure and distance traveled in search of
food. Energy expenditure and intake quantities are widely used
in models attempting to estimate annual food intake. The metrics
commonly used are the average daily food intake as a percentage of
mass, and the average daily metabolic rate as a multiple of BMR (e.g.
Reilly et al., 2004; Leaper and Lavigne, 2007). In the model, whales
expend between 2.07 and 3.1 times the daily estimate of BMR  (with
a mean value of 2.29). Average daily consumption is 3.3% of total
body mass, with a range between 2.2 and 4.7%. These values are
daily averages, and include days when no feeding occurs. Including
only days when feeding occurs in the calculation results in the daily
intake of krill ranging between 1 and 6.6% of total body mass. The
relationship between food intake and swarm density is a saturating
function with swarm density (Fig. 9). This relationship is a Type II
functional response (Holling, 1959). Under the base model run, the
daily food intake is such that whales increase in mass by 20.6 mt
on average during the feeding season (Fig. 10), and this increase
represents a 26.2% increase in initial mass (range 5–48%).

3.3. Impacts of fishing

To explore the impacts of fishing on whales, we compare the
number of successful births that occur per 900 pregnant whales
and the number of adult deaths. As before, if the whale does not
have enough reserves to nurse a calf, we  assume the calf is aban-
doned; the mother may  survive (if she has enough reserves) but
the calf will not. Under the scenario with no fishing (and for the
parameter values in Table 1), there is a median success rate of
0.9 births per pregnant whale (95% CI 0.88–0.92). All of the fish-
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Fig. 8. The mean optimal distance moved (d*) as a function of day (t), length (L), and the proportion of body mass made of blubber. The mean is calculated across all movements
(both  within a patch and between A and C) and only for movements within a patch (D–F).

ing scenarios explored had a significant, negative impact on birth
rate (non-overlapping confidence intervals; Table 4). However, the
negative impact was due to the reduction in krill biomass alone,
as increasing the patchiness of krill swarms did not have an addi-
tional effect on birth rates. The smallest decline in birth rates occurs
when fishing is evenly dispersed across patches, while the largest
declines result from the entire catch limit being removed from
either the Antarctic Peninsula or South Georgia (Table 4). Fishing
only in these patches has a larger effect on birth rates because more
whales occupy them throughout the feeding season. In each simu-
lation the number of whales in each patch starts out the same, but
there is an initial migration of whales to the Antarctic Peninsula,
followed by a migration to South Georgia (Fig. 11). Therefore, fish-
ing in either one of these patches causes a larger decline in birth
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Fig. 9. The average daily consumption of krill (as a proportion of body mass) and
per-capita births with respect to the mean density of krill available.
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Table 4
Impacts of fishing on whale birth and death rates under different scenarios incor-
porating fishing. The upper and lower values correspond to the bounds of the 95%
confidence intervals. AP refers to the Antarctic Peninsula, SO refers to the South
Orkneys, and SG refers to South Georgia. In the adapted scenario, we solved the
backwards iteration with fishing only in AP as fishing in this patch produced the
largest effect on birth rates.

Fishing scenario Birth rate Death rate

Lower Median Upper Lower Median Upper

No fishing 0.88 0.9 0.92 0 0 0
Fishing in all 0.82 0.85 0.87 0 0 0
Fishing in AP only 0.75 0.78 0.792 0 0 0.004
Fishing in SO only 0.82 0.83 0.85 0 0 0
Fishing in SG only 0.77 0.8 0.81 0 0 0.003
Adapted 0.86 0.88 0.9 0 0 0
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across all simulations in the forward iteration.

Table 5
Sensitivity in the model estimate of birth rate (under the base case without fishing or
climate) to change in parameter values. All parameters were changed in the direction
that results in a decline in birth rates. Changes marked by a * are significant (95%
confidence intervals for birth rates do not overlap).

Parameter Change in
parameter (%)

Change in birth
rate (%)

Mean swarm density (ı(j)) −50 −80*
Initial probability of finding a

swarm (p(c,j|0))
−50 −100*

Patchiness parameter (z) −50 −3.7
Overwinter food intake (�) −50 −13*
Distance to breeding grounds (DB) +50 −10*
Initial energy reserves (X(k,0)) −50 −47*
Feeding cost multiplier (˛f) +50 −1
Resting cost multiplier (˛r) +50 −65*
Hours to clear the forestomach (�c) +50 −91*
Assimilation efficiency (A) −25 −82*

rates than fishing in the South Orkneys. When whales are allowed
to adapt to fishing-induced reductions in krill, birth rates do not
change significantly from the base run (Table 4).

3.4. Sensitivity analysis

The model contains a large number of parameters, and many of
the values used are rough approximations. We  therefore explore
the sensitivity of model results to changes in parameter values. In
Fig. 9, we show the per-capita birth rate in relation to the mean
density of swarms. This relationship is sigmoid-shaped, and is a
Type III functional response (Holling, 1959). In Table 5, we  show
the % decrease in birth rate that results from changing the param-
eters. The parameters that have the largest influence on birth rate
are the mean swarm density (ı̄), the initial encounter probability
(p(c|t = 0)), resting metabolic costs (˛r), forestomach clearance rate
(�c), the energy reserves upon entering the feeding grounds (X(k,0))
and the assimilation efficiency (A). The distance to the breeding
grounds (DB) and the overwinter food intake (�) also had small but
significant effects on birth rates, while the parameter controlling
the patchiness of krill swarms (z) had a negligible effect on birth
rates (Table 5).

4. Discussion

We have developed a framework for exploring the effects of
reductions in krill biomass and changes in swarm patchiness on
blue whale foraging and reproductive success. Although the model
is parameterized for blue whales, our novel energetics model could

be applied to other baleen whales. By combining the energetics
model with state dependent behavioral theory, we are able to
explore the impacts of an expanding krill fishery in the Southern
Ocean on blue whales. We  predict that an expanding fishery, may
have a small, negative impact on the population through decreased
birth rates, and that spreading the catch limit throughout the range
of krill can reduce these effects. These effects are predicted to result
from declining krill biomass only, and not from fishery-induced
changes in the patchiness of krill swarms.

The relationships between krill density and predator consump-
tion and reproductive success are important inputs for models used
in ecosystem-based management to determine the impacts of fish-
ing on krill predators in the Southern Ocean (Hill et al., 2007).
Our model predicts nonlinear relationships, with Types II and III
functional responses between krill density and food intake, and
reproductive success, respectively (Fig. 9). However, in our model
we only included very dense swarms, as these are what are relevant
blue whales (Appendix A), such that mean swarm densities shown
in Fig. 9 cannot be used directly in ecosystem models, which typi-
cally use a spatial average of krill biomass (calculated using swarms
of all densities). Our model could be modified to include a broader
range of swarm densities to better inform the management models
(we discuss potential model modifications below). Nevertheless,
knowledge of the relative shape of these functional responses can
better inform management models. Larger declines in krill biomass,
potentially from a loss of sea ice, are predicted to have much larger
impacts on the population vital rates, and thus the recovery, of blue
whales.

The relationship between krill recruitment and sea ice has only
been identified for one region in the Southern Ocean (Siegel and
Loeb, 1995; Quetin and Ross, 2003; Wiedenmann et al., 2009),
and trends in ice extent are not consistent throughout the South-
ern Ocean (Zwally et al., 2002; Stammerjohn et al., 2008). Thus
decreased krill recruitment in one area could be mitigated by
increases in other areas, so whales could respond to poor local
conditions by making long migrations to a new area. In our model
run where whales are able to adapt to the decreases in krill abun-
dance in a particular patch, the net effect on population vital rates
was negligible. Therefore if whales change their foraging behav-
iors in response to changes in local environmental conditions, they
may  be able reduce the impacts of declines in krill abundance.
In the California Current there is some evidence to suggest that
blue whales exploit different feeding areas depending on the large-
scale abundance of their prey, since whales tend to concentrate in
a few productive areas when coast-wide prey abundance is low
(during El Nino years, for example; Benson et al., 2002; Bailey
et al., 2010). Adaptive foraging behavior, coupled with the ability to
migrate great distances within a single feeding season (Bailey et al.,
2010) suggests that blue whales may  be better able to cope with a
changing environment than species with a more restricted foraging
area.

The Southern Ocean is considered a high-nutrient, low chloro-
phyll region, in that phytoplankton do not utilize all the available
macronutrients (nitrate and phosphate). Iron, a micronutrient, is
limiting in these waters, such that increased supply of iron into sur-
face waters results in increased primary productivity (Boyd et al.,
2007). Krill contain large amounts of iron in their tissue, and Nicol
et al. (2010) estimate that krill may  contain 24% of the total iron in
the surface Southern Ocean. Baleen whales may be important for
recycling this iron, since their feces, which is diffuse and typically
remains in surface waters, is high in iron. Nicol et al. (2010) hypoth-
esize that a positive feedback loop exists whereby a high abundance
of baleen whales in the Southern Ocean results in increased pro-
ductivity of the ocean as a whole. If such a positive feedback loop
exists, even small changes in whale birth and death rates could have
a larger effect on the entire Southern Ocean ecosystem.
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The large number of parameters and assumptions in the model
makes it essential to compare model output with observations
to determine the fidelity of the parameters and assumptions. On
the feeding grounds, blue whales in the model are predicted to
consume 3.3% of their total mass on average, although this value
includes days spent not eating. In reviews of studies estimating
cetacean consumption rates, both Reilly et al. (2004) and Leaper
and Lavigne (2007) indicate that daily average consumption rates
above 3.5% of body mass are likely too high, and Reilly et al. (2004)
suggest that between 2 and 3% of total mass is a reasonable esti-
mate. When food is encountered, whales in the model consume
between 1 and 6.6% of their mass daily. This range is consistent
with the range reported by Tamura and Konishi (2006) (between
1.5 and 7%), who examined the stomach contents of thousands of
minke whales. The level of feeding combined with the energetic
costs in the model result in a mass increase of approximately 26%
during the feeding season (range between 5 and 48%). The upper
values in this range are very close to the increase of 49% reported
by Lockyer (1981).

Determining plausible food intake rates can be accomplished
through refining estimates of metabolic expenditures. It is com-
monly assumed that the daily metabolic expenditure in cetaceans is
some multiple of BMR  (Eq. (2)). Leaper and Lavigne (2007) note that
values between 2 and 5 are widely used in modeling approaches,
but that values <1 are possible and those >4 are unlikely. The
median model estimate of 2.29 is within the range reported by
Leaper and Lavigne (2007),  but largely depends on the estimate
of resting metabolic rate (determined by the parameter ˛r, set to 2
in the model). Increasing the cost of resting above 2 × BMR results
in a dramatic drop in birth rates (˛r increased by 50%; Table 4), and
would require similar increases in food intake (discussed below).
The fact that a day spent traveling is ∼3 × BMR  based on the cal-
culation using COT suggests that daily expenditures greater than
3 × BMR  are unlikely. Our results do not provide any insight on the
lower bound of the range of daily energy expenditure.

On average, blue whales in our model are predicted to reject
swarms below 0.11 kg m−3, very similar to the value of 0.1 kg m−3

calculated by Goldbogen et al. (2011) using a different approach. In
the field, however, it is difficult to estimate the threshold swarm
density. Friedlaender et al. (2009) found a difference in the mean
krill densities in areas with and without minke and humpbacks
in the Southern Ocean. The mean spatial density in areas with-
out whales was between 1/3 and 1/2 of the density in areas with
whale present. Our model-predicted thresholds are higher than the
value reported by Friedlaender et al. (2009),  but their densities are
spatial averages (including areas without krill), and are not neces-
sarily representative of the densities of individuals swarms being
consumed.

We predict that a whale will grow in length early in the sea-
son, but only if it has sufficient energy reserves (Fig. 7). Therefore,
lean whales that enter the feeding ground are predicted to first
allocate surplus energy towards blubber reserves, then towards
growth. Lockyer (1981) notes that the ratio of blubber thickness
to length in many species often decreases between December
and February, suggesting that this decline may  be result of late-
arriving whales to the feeding grounds. It is possible though that
the decline in this ratio is due to an increase in length, and
not from a surge in the number of lean whales on the feeding
ground.

Leaper and Lavigne (2007) point out that many of the parameter
values used in cetacean energetics models are often “based on little
more than guess work.” Thus model sensitivity analysis as we have
done here can be used as a guide to focus future research on param-
eters that have the largest effect on model results. For example, the
amount of food that is consumed during the overwinter period is
incredibly difficult to estimate, but it does not have a large impact

on model results, suggesting that determining this quantity is not as
important as other model inputs (Table 5). As already noted, resolv-
ing the debate over basal metabolic costs is very important. The
assimilation efficiency and forestomach clearance rate also have
proportionally large effects on model results, and such quantities
could potentially be refined through studies on captive animals.

The existing model framework can be modified in a variety
of ways. For example, the model could be expanded to explore
the effects of krill reductions over a broader range of whale
lengths and over multiple years. Doing so would likely result
in more pessimistic predictions on survival and birth rates, as
smaller whales need to allocate much of the surplus energy
consumed towards growth in length during the feeding season,
potentially reducing total energy stores needed for the overwinter
period.

The krill spatial model could also be modified to account for
different swarm characteristics and distributions. For example, a
broader range of swarm sizes and densities might be used, or
swarms could be distributed in relation to environmental fea-
tures known to influence krill aggregation (e.g. distance from land
masses or the ice edge). While a wide range of krill landscapes
could be implemented into the current framework, it likely requires
adding more state variables into the behavioral model (e.g. the
optimal decision would also depend on where the whale is in rela-
tion to such features). Increasing the environmental complexity
in this model (and in all models) requires weighing the trade-
offs between the information gained and computational power
required. Experiences in SDP modeling suggest that increasing
environmental complexity often affects only the quantitative and
not the qualitative results (Mangel and Clark, 1988; Clark and
Mangel, 2000).

This model framework could also be used to explore different
questions regarding observed whale behaviors. For example, a flex-
ible final time period (T) could allow for the testing of observed
migration patterns in some species, as Dawbin (1966) found an
orderly progression based on sex and reproductive status in hump-
backs. In addition, one could test the hypothesis of Corkeron and
Connor (1999),  who  suggest that baleen whales migrate to reduce
calf predation in polar waters. By adding calf-mortality in the model
and not allowing whales to migrate, one could quantify the level of
calf mortality that results in a fitness advantage to the long-distance
migration.

In summary, we predict that the recovery of blue whales
will be negatively impacted by future reductions in krill biomass
resulting from an expanding fishery, although adaptive forag-
ing behavior may  be able to mitigate against such reductions.
In addition, catch limit allocation strategies that allocate catches
among areas in proportion to biomass as preferable to con-
centrating catches in a single area, as such strategies are
predicted to have a smaller effect on blue whales. Our model
shows a nonlinear relationship between krill abundance and
blue whale foraging and reproductive success, suggesting that
larger reductions in krill biomass (potentially from a loss of sea
ice) will have a more negative impact on the recovery of blue
whales.
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Appendix A. The krill spatial model

There is a considerable amount of information on the factors
affecting the spatial distribution of krill swarms in the Southern
Ocean. In addition, swarm characteristics (i.e. density, area, size
composition of krill) are also known to vary within particular areas.
For example, Lascara et al. (1999) found across-shelf gradients in
krill abundance and size composition off the west Antarctic Penin-
sula, with more dense swarms with smaller individuals being found
more inshore. Similarly, in the Scotia Sea Klevjer et al. (2010) found
swarms with greater biomass closer to shore, but there were a
greater number of swarms in the more offshore areas. Krill have
also been found to aggregate in dense, narrow bands just south
of the ice edge during the summer months (Brierley et al., 2002).
Within a particular area the density and size of individual swarms
may  also vary on short temporal scales, as Tarling et al. (2009) found
different swarm characteristics depending on the amount of light,
surface fluorescence, and also the size and maturity of krill within
the swarms.

While it is possible to model such complex dynamics within this
framework, doing so greatly increases the computation time of the
model, and such complexity is beyond the scope of this paper. We
therefore create a simplified landscape of krill swarms distributed
between patches three patches, indexed by c. These patches are
located near the Antarctic Peninsula, the South Orkney Islands, and
South Georgia (Fig. 1). The patches last for the duration of the feed-
ing season, and the same size: a square grid 100 km × 100 km.  Patch
size is based on the foraging radius reported for blue whales in the
California Current (Fig. 6 of Bailey et al., 2010). Each patch therefore
has N = 10,000 1 km2 cells.

Tarling et al. (2009) provide information on swarm characteris-
tics in the South Atlantic sector of the Southern Ocean, and we use
some of this information to create a distribution of swarms within
each patch. We  only consider the information on the densest cat-
egory of swarms observed by Tarling et al. (2009),  as Goldbogen
et al. (2011) estimate that only very dense swarms (>0.1 kg m−3)
are profitable for blue whales. Based on the frequency of swarms
observed in the regions we are modeling, we assume that the time-
dependent probability of finding a swarm, denoted p(c|t) is highest
around the Antarctic Peninsula and lowest around South Georgia.
The probability that a swarm in each patch will have the jth den-
sity is denoted p(c,j|t). Swarms around South Georgia contain larger
krill, while swarms around the Antarctic Peninsula contain smaller
krill (Tarling et al., 2009), such that we assume higher density
swarms are more common around South Georgia and less common
around the Antarctic Pensula (Fig. 2).

Swarms in our model have the same volume, v, and differ in
density, ı(j) (kg m−3) only. The mean densities reported by Tarling
et al. (2009) and Klevjer et al. (2010) are well below the profitable
density reported by Goldbogen et al. (2011).  We  therefore only con-
sider high-density swarms, as these are the swarms that are likely
relevant to blue whales (Fig. 2).

The arrangement of krill swarms within a patch is determined
by a spatial structure parameter z which determines how spatially
clumped swarms are (modified from Travis and Palmer, 2005). For
the cth patch, the placement of swarms within a patch is done as
follows.

(1) Pick a random location within the grid, and place the lowest
density swarm (j = 1) in it.

(2) Draw a random variable z* ∼ Unif[0,1].
(3) If z* ≤ z, place the next swarm (j = 1) in an adjacent cell, go to

step 2.
(4) If z* > z, go to step 1.

(5) Continue filling cells of type j = 1 by repeating 1–4 until
p(c,1|t = 0) N cells are filled, then do the same (starting at step
2) for the remaining types of swarm (j = 2,3, . . .,  jmax).

Note that this algorithm does not fill all cells with swarms. If
the overall probability of finding a swarm p(c|t) is 0.2, there will
be 0.8 N empty cells. In the placement of swarms, if all adjacent
cells are filled during step 3, the swarm is placed 2 cells away (i.e.
adjacent to the filled cells).

For a given patch, we  generate thousands of krill arrangements
(for a fixed z and p(c,j|t)) and estimate the probability of finding a
swarm of type j, given the whale is currently in a cell that contained
a swarm of type i in patch c by moving d km away, p(j|c,i,d,t). We
set jmax = 10 for each patch, with ı(j = 1,2, . . .,  10) corresponding to
a densities of 0.075, 0.15, . . .,  0.75 kg m−3.

The above algorithm ignores all environmental characteristics
that might affect the distribution of krill within a patch. With z = 0,
krill are placed completely at random within the patch. However,
as z is increased swarms are more likely to be found close together.
The algorithm allocates swarms in steps by their density, such that
swarms of similar densities are more likely to be found in close
proximity to one another. As a result, even though we  ignore the
environmental factors affecting swarm distribution and character-
istics, running the model with a high z can at least mimic  some of
the broad-scale patterns observed (i.e. that swarms of similar char-
acteristics are often found close to one another in similar strata).

For the base model run we use z = 0.9, but also the sensitivity
of results to this parameter. When exploring the effect increased
patchiness (resulting from fishing), we set z = 0.95.

Appendix B. The energetic costs of the overwinter period

To calculate the total amount of energy needed to survive the
overwinter period, we  model the energetic costs during the over-
winter period using a daily timestep (denoted tw), accounting for
changes in mass that occur as the whale depletes its reserves dur-
ing this period of reduced feeding. The total costs expended during
the overwinter period Cw depends on numerous factors, includ-
ing the whale’s size, reproductive status, distance to the breeding
grounds, DB, and the amount of food consumed during the over-
winter period. The cost of reproducing, CR, is a function of the costs
of calf development, CK and lactation, CL. Estimates of CK and CL

are taken from Lockyer (1981;  Table 1). For simplicity, if the whale
is pregnant we assume the whale gives birth as soon as it reaches
the breeding grounds. The number of days to reach the breeding
grounds, tm is

tm = DB
24sm

(B1)

where sm is the migration speed to the breeding grounds (Table 1).
The daily cost of migrating north to the breeding grounds is

CN(tw) = COT · W(tw) · DB · 24 + I
CK
tm

(B2)

where I is an indicator function that takes a value of 1 if the
whale is pregnant, and 0 otherwise, accounting for the additional
metabolic costs of pregnancy. If a whale spends T days on the
feeding grounds, then the number of days spent on the breeding
grounds, tB = 365 − (T + 2tm), and during this period, activity is likely
greatly reduced. The daily cost on the breeding grounds, CB(tw) is

Cg(tw) = ˛r · BMR + I
CL
tB

(B3)

The daily cost of migrating south to the feeding grounds, CS(tw), is

Cs(tw) = COT · W(tw) · DB
tm

+ I
CL
tm

(B4)
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While on the breeding grounds, whales may  do some feeding, but
the amount consumed is likely far less than the amount consumed
on the feeding grounds. We  assume that on average, whales con-
sume some fraction, � of W̄ on the breeding grounds. The total cost
of the overwinter period, Cw(I), is therefore

Cw(I) =
T+tm∑
tw=T

CN(tw) +
tw=T+tm+tB∑
tw=T+tm+1

(CB(tw) − � · W̄(L) · � · A)

+
365−T∑

tw=T+tm+tB

Cs(tw) (B5)

For a pregnant whale, this equation accounts for the nursing costs
until the mother and calf re-enter the feeding grounds. Situations
may  arise where the mother does not have enough energy to pro-
duce sufficient milk for the duration of the overwinter period.
Under such circumstances, we assume following the birth of the
calf, the mother abandons the calf, and denote this situation with
I′. The total cost in this situation, Cw(I′) is calculated using Eq. (B5),
with CN(tw) calculated with I = 1 (Eq. (B2)) and CB(tw) and CS(tw) are
calculated with I = 0 (Eqs. (B3) and (B4)).
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