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Abstract

Passive acoustic monitoring (PAM) has proven a powerful tool for the study of marine mam-

mals, allowing for documentation of biologically relevant factors such as movement patterns

or animal behaviors while remaining largely non-invasive and cost effective. From 2008–

2019, a set of PAM recordings covering the frequency band of most toothed whale (odonto-

cete) echolocation clicks were collected at sites off the islands of Hawai‘i, Kaua‘i, and Pearl

and Hermes Reef. However, due to the size of this dataset and the complexity of species-

level acoustic classification, multi-year, multi-species analyses had not yet been completed.

This study shows how a machine learning toolkit can effectively mitigate this problem by

detecting and classifying echolocation clicks using a combination of unsupervised clustering

methods and human-mediated analyses. Using these methods, it was possible to distill ten

unique echolocation click ‘types’ attributable to regional odontocetes at the genus or species

level. In one case, auxiliary sightings and recordings were used to attribute a new click type

to the rough-toothed dolphin, Steno bredanensis. Types defined by clustering were then

used as input classes in a neural-network based classifier, which was trained, tested, and

evaluated on 5-minute binned data segments. Network precision was variable, with lower

precision occurring most notably for false killer whales, Pseudorca crassidens, across all

sites (35–76%). However, accuracy and recall were high (>96% and >75%, respectively) in

all cases except for one type of short-finned pilot whale, Globicephala macrorhynchus, call

class at Kaua‘i and Pearl and Hermes Reef (recall >66%). These results emphasize the util-

ity of machine learning in analysis of large PAM datasets. The classifier and timeseries

developed here will facilitate further analyses of spatiotemporal patterns of included toothed

whales. Broader application of these methods may improve the efficiency of global multi-

species PAM data processing for echolocation clicks, which is needed as these datasets

continue to grow.
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Introduction

The Hawaiian archipelago creates a regional oasis in the oligotrophic waters of the North

Pacific Subtropical Gyre [1–3]. The area is an attractive habitat for large ocean predators

including odontocetes, or toothed whales. At least 18 species of odontocetes reside in the

region [4], several of which have island-associated stocks [5]. These stocks in particular have

limited geographic ranges and may be especially vulnerable to environmental perturbations

and anthropogenic impacts (e.g. [5]).

Passive acoustic monitoring (PAM) in odontocete study and conservation efforts can pro-

vide long-term, non-invasive, and cost-effective continuous monitoring of these species (e.g.,

[6–8]). Scientists employ a variety of acoustic recording schemes for PAM monitoring, includ-

ing various bottom-moored hydrophones systems [6, 9] and shipboard studies using towed

acoustic arrays with combined visual observations [10, 11]. Bottom-moored equipment has

the advantage of continuous recording over long time periods, but can suffer from difficulties

in distinguishing species, resulting in few multi-species analyses. Towed array studies can

cover a spatially diverse range, often with species verification, but are usually temporally lim-

ited due to factors including weather and the cost of ship time. These efforts can include analy-

ses of a variety of animal signals including tonal vocalizations (e.g., whistles [6, 12]) and

echolocation clicks, which are produced by odontocetes for foraging and navigational pur-

poses [13, 14].

Echolocation clicks are particularly useful in PAM as certain click types are produced exclu-

sively by a single species and under a wide variety of behavioral states, resulting in a useable

proxy for animal presence. PAM data can be utilized for reliable detection of species for which

species-specific echolocation click types have been identified (e.g., [15, 16]). For this purpose,

feature vectors of echolocation clicks, typically including the timing between successive clicks

in an echolocation click ‘train’ (inter-click-interval, or ICI), spectral properties including peak

frequency and spectral shape, and properties of the waveform (e.g., number of oscillations,

waveform envelope and overall duration), are used to discriminate between odontocete species

using automated algorithms [17].

Long-term PAM data has been used in recent years to determine distributions and densities

of odontocetes as well as provide information on behaviors from diving and diel foraging pat-

terns to larger patterns of animal movement [6, 7, 18–20]. PAM data has also been shown to

be valuable and well-suited for habitat modeling of a variety of cetacean species [21–23]. The

NOAA Pacific Islands Fisheries Science Center (PIFSC) has been collecting passive acoustic

monitoring data with recordings covering the dominant frequency band of most odontocete

echolocation clicks (i.e., 5–100 kHz) for the past decade at three Hawaiian sites. While some

studies have utilized portions of this dataset (e.g., [24, 25]), the full dataset has not been ana-

lyzed to identify the full suite of species present.

The ability to detect and classify echolocation clicks within such a large dataset has been

limited by the time-intensive nature of the manual classification approaches previously

required to derive time series of acoustic presence for a given species. In recent years, machine

learning tools have been successfully used in detection and discrimination tasks for a variety of

species and ocean basins (e.g., [6, 26, 27]). Deep neural networks (e.g., [28, 29]), random for-

ests (e.g., [30, 31]), and clustering algorithms (e.g., [32, 33]), as well as a variety of other classifi-

cation regimes, have all been used for these purposes. Amongst these techniques, unsupervised

clustering (e.g., [13, 17]) in particular can expedite the processing of echolocation clicks in

large PAM datasets by allowing for the automated distillation of dominant signal types. These

methods make use of click features to cluster similar clicks and present an opportunity to iden-

tify both known and novel signals. These signals can then be attributed to species using
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literature records of echolocation clicks and auxiliary data such as sighting records, tag data

locations, or towed acoustic array data with concurrent visual observations [34]. Attribution of

echolocation clicks to species in this way facilitates development of large training sets for spe-

cies identification. This method has been used successfully to analyze data from the Gulf of

Mexico [17] for a variety of species but has not yet been applied to the Hawaiian Islands region.

Once derived, these types can be used as input classes to build a neural-network based classifier

that can be run on novel data and hence expedite analyses of large acoustic datasets [35].

Some species of odontocetes present in the Hawaiian Islands region, such as Cuvier’s

beaked whale, Ziphius cavirostris, and Blainville’s beaked whale, Mesoplodon densirostris, pro-

duce echolocation clicks which have already been described in the literature [16], while others

remain acoustically uncharacterized. Even when clicks have been described, limitations of

available classification methods in correctly identifying the whole suite of species’ clicks hin-

ders processing of datasets for the full repertoire of local species at once, especially when sig-

nals are highly similar. For some species or species groups, such as beaked whales and Kogia
spp., disparate detectors have been used to successfully identify and study target species (e.g.,

[36, 37]). In this study, machine learning methods were used for signal discovery, detection,

and classification of Hawaiian Islands regional PAM data, resulting in a comprehensive library

of the dominant echolocation click types present at three monitoring sites. A neural network-

based classifier was then developed and used to classify clicks across the entirety of this dataset,

facilitating future regional studies of included species. The tools used here improve upon pre-

vious methodologies by allowing for a single detection step and classification workflow for all

included species, expediting data processing. Additionally, the methodology employed is mal-

leable in that the classifier learns from the data itself instead of using heuristics defined by

other researchers, often in differing ocean basins, to define types.

Methods

Data collection

Passive acoustic data were collected using bottom-moored High-frequency Acoustic Record-

ing Packages (HARPs) [38] consisting of one or more hydrophones, logging equipment, bat-

teries, and flotation. The majority of the deployments used in this study utilized a system

consisting of a low-frequency and a high-frequency hydrophone, with the crossover between

the two occurring at either 2 or 25 kHz depending on the deployment (S1 Table). Crossover

frequency is important to note as changes in sensitivity at the crossover frequency can affect

analyses. In all cases, sensors were connected to custom-built preamplifiers and bandpass fil-

ters. Frequency-dependent sensitivity of representative systems was calibrated at the Navy’s

Transducer Evaluation Center (TRANSDEC). Locations of specific deployments varied

slightly due to the difficulty of at-sea deployment of seafloor moorings.

Data from three recording sites were included in this study: one off the west side of Hawai‘i

Island (henceforth referred to as Kona), one off the western side of Kaua‘i, and one on the

northern side of Manawai (also known as Pearl and Hermes Atoll and henceforth referred to

as PHR) (Fig 1; S1 Table). Deployment setup varied at these sites in terms of recording sched-

ule, instrument depth, and duty cycle regime (S1 Table).

Duty cycling refers to alternating periods of recording and non-recording (e.g., recording

of 5 minutes out of every 25 minute period) to extend battery life and allow for longer deploy-

ments. Data from these sites were recorded at a 200 kHz or 320 kHz sampling frequency and

16 bit quantization at depths ranging from 550–1150 meters (S1 Table). All hydrophones were

buoyed approximately 10–30 meters from the seafloor. The data from the three sites combined

represents approximately 15 instrument years of recordings (S1 Table).
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Data processing

Click detection. Odontocete echolocation clicks were detected using an energy detector

that ran as an added package of the MATLAB-based software program Triton [39]. This detec-

tor first determined periods for which acoustic energy in a frequency band of interest exceeded

a user-defined threshold, then searched those time periods for impulsive signals that met sev-

eral criteria characterizing odontocete echolocation clicks. The underlying mechanics of the

detector are described in Frasier et al. (2017) [17] and in Frasier, K.E. (2021) [35] in more

detail. Specifications for this detector included application of a high pass filter at 10 kHz to

exclude low frequency noise sources. A low pass filter was set at 100 kHz, regardless of sam-

pling frequency, to simplify clustering and neural network steps. Additionally, a peak-to-peak

amplitude threshold of 115 dBpp re 1 μPa was set after manual review of a subset of the data

determined that this was an acceptable threshold to consistently detect a majority of odonto-

cete clicks while excluding most low amplitude impulsive signals from ships and other noise

sources. Signal duration was used to exclude non-target signals; only detections between 30–

1200 μs in duration were retained, and detections with less than 100 μs of separation were

merged. Features of retained clicks including time and date, peak-to-peak received level, and

frequency spectra were stored for subsequent analyses. Frequency spectra were calculated

using a 400-point (sampling frequency (fs) = 200 kHz) or 640-point (fs = 320 kHz) FFT of

Hanning-windowed data centered on the click peak amplitude.

Unsupervised clustering methods and click type identification. Detected impulsive sig-

nals were separated into distinct types via a two-step clustering method. At this point, a mini-

mum received level of 120 dBpp re 1 μPa was set to perform clustering on higher-quality

detections. In the first clustering step, data were split into 5-minute bins. Individual detections

in each bin that passed the received level threshold were compared against one another and

clustered together based on spectral shape (pairwise correlation distance, [40]) using the

Fig 1. Map of recording locations. Map showing the latitude-longitude locations of the Kona, Kaua‘i, and PHR sites.

Location and depth of each site was averaged among deployments from that site. Basemap image is the intellectual

property of Esri and is used herein with permission. Copyright © 2022 Esri and its licensors. All rights reserved.

https://doi.org/10.1371/journal.pone.0266424.g001
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Chinese Whispers (CW) algorithm [41]. This process was iterative, with each detection within

a 5-minute bin beginning as a single-node cluster and being iteratively re-assigned to larger,

closely related clusters until reassignment ceased (i.e., until all detections were assigned the

same label as detections to which they were most strongly connected). Minimum cluster size

was set at 50 detections, and maximum network size was set at 10,000 nodes (chosen at ran-

dom from all detections in the bin) due to computational limitations. A maximum of 15 itera-

tions of this process were completed, though clustering usually ceased before reaching this

threshold. The final partition for each bin was chosen based on highest average normalized

mutual information (NMI) score [42], which compares clusters across multiple partitions to

determine consistency of types.

Though not used as a feature for clustering, ICI distributions were calculated for retained

bins for use in later classification steps. These distributions were calculated for each cluster

found in a 5-minute bin by calculating the timing between successive detections in that cluster,

with distributions being truncated at 0.6 seconds. This value was inclusive of known modal

inter-click interval values for target odontocete species. ICI distribution shape and modal ICI

values were used in later evaluation steps instead of ‘raw’ ICI values between detections to

overcome issues related to recording multiple animals instead of a single individual.

Mean normalized spectra and mean normalized waveform envelope were also calculated

for each cluster in every bin. To calculate mean normalized spectra, power spectral density of

clicks was computed and converted to a dB scale. These spectra were normalized by setting the

minimum amplitude to zero and maximum to one. Normalized spectra were then averaged to

determine mean normalized spectra on a dB scale (henceforth ‘mean spectra’).

In the second step, mean spectra and waveform envelopes determined in the first clustering

step were compared across a large subset of the data to determine the dominant detection

types in each deployment, again using pairwise distances and the CW algorithm. Thresholds

for this step were similar to those used in the first clustering step, though in this case the maxi-

mum allowable network size was 20,000 bins, and retained clusters were required to contain a

minimum of at least 25 5-minute bins. In this step, 1% of the least-connected nodes were

pruned from within each cluster to result in cleaner final clusters. This second clustering step

was performed for a total of five trials, with the best partition being chosen automatically

based on NMI. More detail on this process can be found in Frasier, K.E. (2021) [35].

Once clusters were determined for each deployment, detected signals were visualized using

LabelVis, a custom script developed by the author as an add-on package to Triton software

[39] that allows users to visualize various depictions of the acoustic data overlaid with manu-

ally or automatically generated labels. This program is publicly available on GitHub [43] and

allowed for manual examination of timeseries and spectral information for individual clicks

from retained clusters to determine which might be combined or discarded. For each deploy-

ment, several months of data were examined to be sure that signals contributing to each cluster

were distinct from others and not data artifacts. Clusters from a given deployment were deter-

mined to be the same if they were spectrally similar, had similar ICI distributions and modal

ICI values, and were often concurrently or sequentially present. Some clusters (approximately

7% of total clusters) were alternatively determined to be mixed based on spectral or ICI simi-

larities and high co-occurrence with multiple, distinct types. Such clusters were not grouped

into the final types and did not contain any types that weren’t also found in non-mixed clus-

ters. Clusters were then compared across deployments and sites and were grouped based on

spectral similarity as well as shape of the ICI distribution to determine a final set of echoloca-

tion click types, as well as an outgroup of noise detections.

Final echolocation click types were described in terms of frequency and -3 dB bandwidth of

their spectral peaks as well as peak ICI values using a subset of clicks from all three sites
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determined by inspection to be representative of the overall variability in spectra and ICI.

Peaks and -3dB bandwidths were found using the main peak of individual click spectra for all

available high-quality clicks of a given type (minimum = 2500 clicks). Click quality was deter-

mined by manual review, with a focus on removing detections for which spectra were subject

to data artifacts. The distribution of these values was plotted and considered in conjunction

with mean spectra for the type in order to determine whether or not multiple peaks should be

described (i.e., whether the distribution of peak values was unimodal). ICI distributions were

constructed and fit with Gaussian curves to determine the peak ICI value and approximate

standard deviation. Where possible based on previous literature, click types were attributed to

specific odontocetes at the genus or species level as detailed below.

Classifier creation and evaluation. For the purposes of classifier training and testing, the

echolocation click types distilled above were used as input classes. An additional ‘junk’ class

containing clusters of detections from noise sources such as ships and echosounders was

included to prevent misclassifications of these sources as odontocetes. These noise sources

were picked up by the detector due to their commonality in the data, particularly at the Kona

site [44], and the similarity of these signals to echolocation clicks. Clusters of sperm whale,

Physeter macrocephalus, echolocation clicks were also grouped into this ‘junk’ class due to the

difficulty of separating these clicks from high-frequency ship noise as both can occupy the

same frequency range between ~5–20 kHz. Additionally, there was a high likelihood of missing

many sperm whale clicks beneath the lower end of the 10 kHz bandpass filter employed in

click detection.

For each class, 5000 examples (e.g., 5000 bins from each final click type) were chosen at ran-

dom from the input set and used in the train/test/validation data with a 70/20/10 split. For the

class representing Cuvier’s beaked whale, input vectors of mean spectra, waveform envelope,

and ICI values were augmented with additional example bins from similar data recorded off

the coast of Southern California due to a limited number of observations in the Hawai‘i data-

set. Approximately 50% of the final train/test/validation examples for Cuvier’s beaked whale

were from this additional dataset. Training, testing, and eventual labelling of novel data was

completed at the 5-minute bin level based on groupings made in the first step of the clustering

algorithm, i.e., all clicks clustered as one ‘type’ at the 5-minute bin level received the same label

from the network. Labelling at this level allowed for the inclusion of ICI distribution as an

input feature and tends to lead to higher classification accuracy [35]. Where the total number

of example bins was less than 5000, existing examples were chosen at random and data were

augmented to create “new” examples for the classifier to learn from. For mean spectra and

waveform envelope, low-amplitude Gaussian white noise was generated and added to existing

examples to create these “new” examples. For ICI, data points were augmented via addition of

random values selected from a distribution generated from original input ICI values.

Click features used in network training were ICI distribution, spectral shape, and waveform

envelope. A single classifier was developed using data from all sites. The network itself was

compiled using an add-on package of Triton [39] that allows the user to construct a deep feed-

forward neural network with user-specified parameters such as total number of epochs, size

and number of hidden layers, and dropout rate. Networks with variations in the above param-

eters were compiled and evaluated based on accuracy for each type as well as confusion

amongst types in both the training and testing sets. The top three networks were chosen from

these based on minimizing confusion and maximizing accuracy across types. These networks

were evaluated based on performance on novel data compared to manual labelling of that

data. Novel data were chosen as a pseudo-random subset of all available data, and manual

labelling of this dataset was completed using DetEdit, a graphical user interface for annotating

acoustic events [45].
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Performance was evaluated based on the accuracy, precision, misclassification rate, specific-

ity (proportion of true negatives), and recall of each network to each class both at individual

sites as well as the three sites combined. A final network was chosen based on highest accuracy,

recall, and precision values across types and sites (Eqs 1 and 2). For the final chosen network,

additional comparisons of network results versus manually labelled data were undertaken so

that final performance metrics would cover the widest number of months and years possible at

each site. Only bins containing clicks with a received level above 125 dBpp re 1 μPa were con-

sidered in this final evaluation to account for differing sensitivities across hydrophones and

sites. Performance on the novel data was again evaluated using accuracy, recall, and precision

(Eqs 1–3). These metrics were evaluated by class and by site, as well as for all sites combined.

Accuracy ¼
true positivesþ true negatives

all detections
ð1Þ

Recall ¼
true positives

true positivesþ false negatives
ð2Þ

Precision ¼
true positives

true positivesþ false positives
ð3Þ

Resulting classifications on the full dataset were used to provide relative acoustic presence

estimates of each class at each site, to bolster species or genus assignments via comparison

with established sighting, tag, and acoustic records. All detections, including those from mixed

clusters, received a label in this analysis step. Relative acoustic presence estimates were calcu-

lated per deployment as the percentage of recording days with presence of a given type. Final

relative acoustic presence was then calculated by taking the average percent of odontocete

presence attributable to a class across deployments at a site.

Auxiliary data sources and type classification. For echolocation click type distilled in the

clustering process without clear assignments from previous literature, additional data sources

were included in analyses in an attempt to assign these types to species. Towed array data avail-

able from the NOAA Hawaiian Islands Cetacean and Ecosystem Assessment Survey (HICEAS)

2017 cruise [46] around the Hawaiian Islands was used in this process. This dataset consisted

of visual sightings of animals in conjunction with concurrent acoustic recordings, allowing

bioacoustic signals to be reliably matched to species. Acoustic data from this cruise was col-

lected using two 3-channel hydrophone arrays connected by 100 meters of cable, towed 300

meters behind the ship. The same detector used on the HARP data was used again on this

acoustic data to examine clicks present during encounters where relevant species (i.e., rough-

toothed dolphins, Steno brednanesis, common bottlenose dolphins (hereafter referred to as

bottlenose dolphins), Tursiops truncatus, melon-headed whales, Pepnocephala electra, striped

dolphins, Stenella coeruleoalba, pantropical spotted dolphins, Stenella longirostris, and spinner

dolphins Stenella attenuata) were sighted. False positive detections during these encounters

were removed using DetEdit. Concatenated and mean spectra were then calculated for these

encounters for comparison to the potential click type.

Additional support for click type assignment was obtained from sighting data from the

region of the Kona and Kaua‘i HARPs, obtained through boat-based sighting efforts [4].

When sightings occured near HARP locations, recorded clicks may be attributable to concur-

rently sighted animals. Sightings were assessed for any detections of relevant species that

occurred within a 10 km radius of the HARPs. Sightings within this distance and within two

hours of echolocation clicks labelled as the unknown click type were assessed for viability of
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providing a match based on the distance from the HARP and the time offset between the sight-

ing and the acoustic encounter.

Results

Type classification

The click detection and clustering process resulted in ten echolocation click types, presumably

representing ten or more species: false killer whale, Pseudorca crassidens, low-frequency 1

(LF1, possibly rough-toothed dolphin), short-finned pilot whale, Globicephala macrorhynchus
(two click types), bottlenose dolphin/melon-headed whale, Blainville’s beaked whale, Cuvier’s

beaked whale, stenellid dolphins (two click types), and dwarf (Kogia sima) or pygmy (K. brevi-
ceps) sperm whale (pooled as Kogia spp). Descriptive statistics for each type are provided in

Table 1. Information on validation data used to attribute types to species is provided in

Table 2. Available data for validation included previous acoustic records, spatial distributions

(including abundance information), temporal behavior studies, and auxiliary sighting/acoustic

data.

A—False killer whale. The false killer whale echolocation click type was described by a

single spectral peak at 16.5 kHz with -3 dB bandwidth of 6.5 kHz. The ICI distribution for this

click type was bimodal, with a first peak at 28.4 ms and a second peak at 166 ms (Table 1, Fig

2A). The first peak in ICI was determined to be a result of multiple animals clicking at the

same time, as well as single animals approaching a target. Labels of this type matched well with

the encounters used for acoustic discrimination of false killer whales in Baumann-Pickering

Table 1. Quantitative click type descriptions.

Neural Network Class, Number of

Clicks

Spectral Peak 1 (kHz) Spectral Peak 2 (kHz) Spectral Peak 3 (kHz) Modal ICI

(milliseconds)Peak

frequency

-3 dB

bandwidth

Peak

frequency

-3 dB

bandwidth

Peak

frequency

-3 dB

bandwidth

False killer whale, n = 4000 16.5 (13.0–20) 6.5 (1.0–12.0) - - - - - - - - 28.4 (+/- 28.0)

166 (+/- 109)

Low-frequency 1, n = 4000 22.0 (20–25) 5.5 (1.5–19.5) - - - - - - - - 169 (+/- 132)

Short-finned pilot whale 1, n = 7000 13.0 (12.0–

13.5)

1.5 (1.0–6.5) 28.0 (26.0–

31.0)

5 (2.0–10.0) - - - - 184 (+/- 66.9)

Short-finned pilot whale 2,

n = 40000

13.0 (12.5–

14.0)

1.5 (1.0–2.0) 18.5 (16.5–

20.5)

3 (1.5–9.5) 48.5 (36.0–

40.5)

3.0 (2.0–8.5) 206 (+/- 56.0)

Tt/Pe, n = 20000 12.5 (11.5–

13.5)

1.5 (1.0–3.0) 32.5 (30.0–

35.5)

5.5 (2.5–12.0) - - - - 109 (+/- 109)

Blainville’s beaked whale, n = 25000 24.0 (23.0–

25.5)

2.5 (1.5–4.5) 36.0 (32.0–

41.5)

9.0 (4.5–15.0) - - - - 319 (+/- 109)

Cuvier’s beaked whale, n = 2500 17.0 (16.0–

18.5)

2.5 (2.0–3.5) 24.0 (22.0–

25.5)

4.0 (2.0–9.0) 40.0 (37.0–

44.0)

6.5 (3.0–12.5) 433 (+/- 59.0)

Stenellid 1, n = 100000 18.5 (16.5–

20.5)

4.25 (3.0–9.75) 50.0 (45.0–

54.0)

9.0 (3.5–18.5) - - - - 48.5 (+/- 43.5)

Stenellid 2, n = 90000 25.0 (22.5–

27.0)

4.5 (3.0–6.5) 39.5 (35.0–

44.5)

8.5 (4.0–18.0) - - - - 53.5 (+/- 0.0401)

Kogia spp., n = 6000 93.5 (87.5–

99.5)

10.0 (5.0–17.5) - - - - - - - - 90.3 (+/- 41.8)

Parameters of click types (i.e. neural network classes) including median location of spectral peaks for all evaluated clicks as well as peak value for ICI distributions of

evaluated acoustic encounters of each class. Species are organized based on overall frequency content of clicks (lowest to highest) and then by number of spectral peaks.

Number of clicks evaluated is given along with class name. For spectral peaks, values in parentheses give the 10th and 90th percentiles of the data. For ICI, standard

deviation from the peak (i.e. modal) value is given instead. For the false killer whale class, the ICI distribution was bimodal; in this case, two ICI values are given instead

of one. The bottlenose dolphin/melon-headed whale type is abbreviated as Tt/Pe.

https://doi.org/10.1371/journal.pone.0266424.t001
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et al. (2015) [26]. For this type, acoustic presence determined from automated labelling was

recalculated via manual checking of all false killer whale labels after manual review of labels

revealed that many noise detections were being incorrectly labelled as this type. Final type

assignment was based on previous acoustic and spatial records (Table 2, S1 File).

B—Low-frequency type 1 (LF1)—possible rough-toothed dolphin. The LF1 click type

was described by a single spectral peak at 22.0 kHz with a -3 dB bandwidth of 5.5 kHz. The ICI

distribution for this type had a single peak at 169 ms (Table 1, Fig 2B). This class did not

match any well-established records of echolocation clicks, or have a match within click type

‘libraries’ previously produced using these clustering methods in other regions [17, 47–49].

However, the peak frequency and -3 dB bandwidth of this type were very similar to the limited

previous descriptions of clicks of the rough-toothed dolphin [50]. This species has one of the

highest abundance estimates of any in the Hawaiian Islands [51]. Additionally, small boat sur-

veys over the course of 2000–2012 found >25% of all sightings of cetaceans near Kaua‘i, where

LF1 is most common (present 83% of recording days), were attributable to rough-toothed dol-

phin [4]. This type was less common at the Kona and PHR sites (acoustically present 40% of

days in both cases). This general trend (most common near Kaua‘i) is reflected in the sighting

record of rough-toothed dolphins, in which this species represents only ~10% of sightings lee-

ward of Hawai‘i Island [4]. Less data is available in the vicinity of PHR, though the species has

been sighted previously in the area [51]. Recently updated habitat-based density models for

Hawaiian odontocetes suggest that the locations of the Kaua‘i and PHR HARPs are within pre-

dicted regions of highest density for the rough-toothed dolphin [52]. Preliminary exploration

into diel trends in this type revealed an overwhelming decrease in acoustic activity during day-

light hours, which fits with a recent study of rough-toothed dolphin diving behavior that has

suggested the species is more active during dusk/night [53].

Labelled towed array data from HICEAS 2017 supported the hypothesis that LF1 was a

rough-toothed dolphin click type. Four acoustic encounters with visually-verified rough-

Table 2. Validation types.

Echolocation Click

Type

Validation Type [References]

False killer whale previous acoustic [26], spatial distribution [4, 27–29]

Low-frequency 1� previous acoustic (limited) [33], spatial distribution [4, 34–35], temporal behavior [36],

auxiliary sighting/acoustic data

Short-finned pilot

whale 1

previous acoustic [16, 26], spatial distribution [4, 37, 38, 39]

Short-finned pilot

whale 2

previous acoustic [16, 26], spatial distribution [4, 37, 38, 39]

Tt/Pe previous acoustic [40], spatial distribution [4, 37, 43], temporal behavior [41–42]

Blainville’s beaked

whale

previous acoustic [17], spatial distribution [4, 35, 44–46]

Cuvier’s beaked whale previous acoustic [17], spatial distribution [3–4, 45]

Stenellid 1 previous acoustic [40, 47], spatial distribution [4, 28, 35, 37, 48, 49]

Stenellid 2 previous acoustic [40, 47], spatial distribution [4, 28, 35, 37, 48, 49]

Kogia spp. previous acoustic [9, 50], spatial distribution [4, 51]

Validation sources (with references) for each echolocation click type. Validation types are previous acoustic, spatial

distribution (including abundance information), temporal behavior, and auxiliary sighting/acoustic data. The Tt/Pe

abbreviation corresponds to the bottlenose dolphin/melon-headed whale type.

� Validation of this type as likely rough-toothed dolphin is included in the main manuscript as this represented a

novel type description. Further detail regarding all other types is available in S1 File.

https://doi.org/10.1371/journal.pone.0266424.t002
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toothed dolphins were compared to LF1 clicks to determine the suitability of this classification.

The mean spectra from these encounters were compared to the type spectrum for LF1, and

found to be a fairly consistent match across all encounters, though the mean spectra for

encounter 1 had a higher-frequency peak and less content in the band from 20–30 kHz when

compared to the type example and other encounters (Fig 3). It is notable that a spectral ‘notch’

existed in the towed array data at about 50 kHz. This notch was determined to be an artifact of

the data and not related to the clicks presented here due to its persistence across the dataset

(Fig 4).

Additionally, a total of four sightings of rough-toothed dolphin were deemed potentially

usable for ground-truthing type LF1 based on proximity to the Kona or Kaua‘i HARPs during

times at which the HARPs were recording (distance <10 km from the HARP). Of these, two

sightings approximately 5 km from the Kaua‘i site had concurrent LF1 clicks recorded on the

HARP (example long-term spectral average, Fig 5); the other two sightings did not have con-

current clicks of any type. For the sighting shown, clicks of the LF1 type began approximately

2.5 hours before the sighting, continuing until about one hour before the sighting. In this

example, the increase in energy < 20 kHz towards the end of the window is due to a ship pas-

sage. Based on the evidence compiled through these methods, it was concluded that LF1 repre-

sented the clicks of the rough-toothed dolphin.

C—Short-finned pilot whale. Two click types in the data were likely attributable to the

short-finned pilot whale. The first of these types was characterized by two spectral peaks, one

at 13.0 kHz, and a more dominant peak at 28.0 kHz. For these peaks, -3 dB bandwidths were

1.5 and 5.0 kHz respectively. The peak ICI for this type was 184 ms (Fig 2C1, Table 1). The sec-

ond type was characterized by three spectral peaks: two more minor peaks at 13.0 and 18.5

kHz, and one higher amplitude peak at 48.5 kHz. In this case, -3 dB bandwidths were 1.5, 3.0,

and 3.0 kHz, respectively. This type had a peak ICI of 206 ms (Fig 2C2, Table 1). An attempt

was made to group these types together under one ‘short-finned pilot whale’ class for neural

network training and testing purposes; however, classifier performance was improved by leav-

ing the two types as separate classes. Validation for this type description was provided by previ-

ous acoustic records and spatial distribution data (Table 2, S1 File).

D—Bottlenose dolphin and melon-headed whale. The combined bottlenose dolphin

and melon-headed whale (Tt/Pe) echolocation click type was characterized by a dominant

peak at 32.5 kHz with a -3 dB bandwidth of 5.5 kHz and an often-present lower frequency

peak at 12.5 kHz with a -3 dB bandwidth of 1.5 kHz. Peak ICI for this type was 109 ms (Fig 2D,

Table 1). It is worth noting that the lower frequency peak was likely the result of residual

energy from whistles that often accompany echolocation clicks of this type. Validation for this

mixed type was provided by previous acoustic records, spatial distribution data, and temporal

behavior records (Table 2, S1 File).

E—Blainville’s beaked whale. The Blainville’s beaked whale echolocation click type was

characterized by a dominant higher-frequency peak at 36.0 kHz with a -3 dB bandwidth of 9.0

kHz and a minor, not always present, lower-frequency peak at 24.0 kHz with a -3 dB band-

width of 2.5 kHz. This click type had a peak ICI of 319 ms (Fig 2E, Table 1). The type was

determined to be Blainville’s beaked whale based on previous acoustic records and spatial dis-

tribution data (Table 2, S1 File).

F—Cuvier’s beaked whale. The Cuvier’s beaked whale echolocation click type was char-

acterized by a dominant peak at 40.0 kHz and lower-amplitude spectral peaks at 17.0 and 24.0

kHz (Fig 2F, Table 1). This click type had a peak ICI of 433 ms. This type distinction was vali-

dated using previous acoustic and spatial distribution records (Table 2, S1 File).

G—Stenellids. The stenellid echolocation click type was defined by spectral peaks at 18.5

and 50 kHz, with a peak ICI of 48.5 ms (Fig 2G1, Table 1). The lower frequency spectral peak
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Fig 2. Echolocation click types. Plots A-H depicting data from representative clicks from each of 10 final click types:

(A) False killer whale, (B) Low-frequency type 1 (LF1), (C1) Short-finned pilot whale 1, (C2) Short-finned pilot whale

2, (D) Bottlenose dolphin/ melon-headed whale, (E) Blainville’s beaked whale, (F) Cuvier’s beaked whale, (G1)

Stenellid 1, (G2) Stenellid 2, and (H) Kogia spp. Panels 1–4 (left to right) depict the following: (1) mean spectra, shown

along with 10th and 90th percentile values, (2) modal inter-click interval distribution, (3) concatenated click spectra of
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in this type was likely the result of residual energy from underlying whistles. A second type of

stenellid clicks was identified in this dataset (Fig 2G2, Table 1), defined by spectral peaks at

25.0 and 39.5 kHz, with a peak ICI of 53.5 ms. However, it was determined that the differences

between these two subtypes that lead to their separation during clustering was most likely due

to differences in recording equipment. The second type was seen almost exclusively in deploy-

ments where the crossover frequency between the low- and high-frequency hydrophones was

25 kHz, which may introduce artificial notches in click spectra, likely causing the peak at 25

kHz seen for this type (Fig 2G2). It would be reasonable to group these types into one stenellid

group; however, as with short-finned pilot whale, the two types were left separate due to

improved classifier performance. Validation of these types as stenellid was provided based on

previous acoustic and spatial distribution data (Table 2, S1 File).

H—Kogia spp. The Kogia spp. click type was defined by a single high-frequency peak at

93.5 kHz and a peak ICI of 90.3 ms (Fig 2H, Table 1). The full spectral shape of these clicks was

not captured here as it is above the limit of the bandpass filter used in the original click detec-

tion step (100 kHz), but the partial peak captured was indicative of aliasing from higher-fre-

quency (i.e., 125 kHz) Kogia spp clicks [54]. Acoustic differentiation between species of Kogia
is not possible with the available data; hence description of this type must be left at the genus

level. Validation for this type was provided by previous acoustic and spatial distribution

all clicks included, and (4) click waveform envelope for all clicks. Click waveform envelope has been sorted by peak

amplitude (highest to the left), and concatenated clicks have been sorted correspondingly. Types are ordered by peak

frequency.

https://doi.org/10.1371/journal.pone.0266424.g002

Fig 3. Towed-array S. bredanensis encounters. Figure depicting (a) mean spectra, (b) concatenated click spectra, and

(c) an example long-term spectral average of a towed-array acoustic encounter of verified rough-toothed dolphins.

Panel (a) includes the mean type spectra of the LF1 click type for comparison. Delineations in panel (b) (white lines)

separate clicks coming from encounters 1–4. Panel c shows a long-term spectral average of raw data from an example

encounter coming from the towed array dataset.

https://doi.org/10.1371/journal.pone.0266424.g003
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records (Table 2, S1 File). Information provided in said records suggested that this type was

mostly composed of dwarf sperm whale clicks (S1 File).

Classifier performance

The best performing neural-network based classifier consisted of the following: an input layer,

four 512-node fully-connected layers with 50% dropout between each, and a softmax output

layer. Networks of this type were trained on a variety of feature combinations, with the best

performance (highest accuracy and recall values across classes and sites) resulting from train-

ing on clustered 5-minute bin values of peak ICI, mean spectral shape, and mean waveform

envelope. Accuracy for this classifier on novel data, which was manually labelled at the 5-min-

ute bin level for network evaluation purposes, was high across classes and sites (> 96% in all

cases), with lowest accuracy occurring for false killer whales at the Kona and PHR sites (96.2%

and 96.6%, respectively), and rough-toothed dolphin (97.3%) at the Kaua‘i site. The false killer

whale class also had the lowest accuracy score for the combined-sites results (96.9%) followed

by rough-toothed dolphin (98%). Accuracy was highest for the Cuvier’s beaked whale and

Kogia spp. classes at the Kona site (99.7%), Blainville’s and Cuvier’s beaked whales at Kaua‘i

Fig 4. Additional towed-array examples. Long-term spectral average of two different hours of towed-array data,

displaying the persistence of a notch in sensitivity at ~ 50 kHz regardless of species present. Panel (a) displays sound

data from anthropogenic sources, while (b) displays both anthropogenic noise and a delphinid encounter (starting at ~

0.5 hours).

https://doi.org/10.1371/journal.pone.0266424.g004

Fig 5. Long-term spectral average of an LF1 encounter. Long-term spectral average of data from 11/13/2015

including clicks labelled as type LF1. A sighting of rough-toothed dolphins occurred about 1 hour after this encounter,

approximately 5 km from the location of the HARP.

https://doi.org/10.1371/journal.pone.0266424.g005
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(99.8%), and Cuvier’s beaked whale at PHR (99.7%); though in the full-site data accuracy was

highest for Cuvier’s beaked whale and stenellid type 2 (99.7%) (Table 3).

While accuracy was markedly high for all types, recall and precision presented a more

nuanced picture. Lower recall values (i.e. below 75%) indicating that bins of a given type were

missed by the network were found for short-finned pilot whale class 2 at Kaua‘i and PHR

(Table 3). However, this type is also fairly uncommon at these sites as indicated by a low num-

ber of presence bins within the manually labelled dataset for that type (36 bins at Kaua‘i and

only 11 bins at PHR, Table 3). Lower precision values, indicating a high presence of false posi-

tive bins for a type, were concerning for the false killer whale type at all sites except Kaua‘i,

short-finned pilot whale type 2 in the full data, short-finned pilot whale type 1 at PHR, and the

bottlenose dolphin/melon headed whale type at Kona (Table 3). Cases where low precision val-

ues were likely related to a small number of bins (corresponding to those with low recall as

well as Cuvier’s beaked whale at Kona, Kogia spp. at PHR, and short-finned pilot whale type 2

at Kaua‘i and PHR) were not considered of concern at this time. The lower precision value for

short-finned pilot whale type 2 in the full dataset is likely driven by lower recall at Kaua‘i and

PHR, and hence was also not considered concerning.

Discussion

This study demonstrated the efficacy of machine learning for processing and classifying avail-

able large acoustic datasets for odontocete species, in this case in the tropical Pacific islands.

Using machine learning methods, it was possible to discriminate the echolocation clicks of five

species of odontocetes (false killer whale, short-finned pilot whale, rough-toothed dolphin,

Cuvier’s beaked whale, and Blainville’s beaked whale) as well as three additional groups (ste-

nellid dolphins, Kogia spp., and bottlenose dolphin/ melon-headed whale). The classification

of the LF1 click type as rough-toothed dolphin highlights a unique advantage of the clustering

methodology that allows for quantitative grouping of unknown types more easily than manual

labelling. While manual identification might allow one to classify data as a known type, or a

general ‘unknown’ type, clustering provides a more standardized, facilitated way to determine

one or more unknown types in a large dataset, particularly when differences appear to be small

yet consistent. As seen with rough-toothed dolphin in this case, combination of click features

from an unknown type with other acoustic and sighting records from the region can lead to

new classifications and provide insights for species with few previous acoustic descriptions.

It is worth noting, however, that comparisons of acoustic data from multiple recordings

requires consideration of system differences. Exact spectral matches between encounters

recorded on HARPs versus those recorded by towed acoustic arrays are unlikely due to the dif-

ferences in both equipment and recording schemes (e.g., recording at the ocean floor versus

near the surface, increased noise due to active towing, differences in animal behavior and/or

orientation to the receiver). As such, in this study, the general spectral shape of mean spectra

from towed array encounters versus the type spectrum from HARP data were given more

weight than exact peak values. This study also demonstrates the usefulness of comparing

observed relative species presence to sighting records to bolster classifications. While this pro-

cess did not lead to distinction of the bottlenose dolphin/ melon-headed whale, Kogia spp., or

stenellid types, the comparisons provide context for what the makeup of these types might be.

Similar methodology has recently been applied to delphinid species in the Atlantic Ocean [34].

One potential downfall of this clustering method is the loss of rarer types. By clustering

clicks or bins together and setting various pruning thresholds, some connections and clusters

were removed from the data, or grouped into larger, more dominant types. In the Hawaiian

region, there are at least 18 species of odontocetes [4], but only ten distinct click types were
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identified using our clustering methods, though sperm whales were purposefully excluded

from analysis. Other, rarer species including Risso’s dolphin, Grampus griseus, Longman’s

beaked whale, Indopacetus pacificus, Fraser’s dolphin, Lagenodelphis hosei, and pygmy killer

whale, Feresa attenuata, were not identified in this dataset using these methods. While it is

possible that none of these species were present in the dataset, it is more likely that some (pri-

marily pygmy killer whales, given their spatial use off Kona [55]) were present in the record in

small numbers and hence not represented by their own cluster. In the case of this study, this

lack of representation in the final types resulted in no corresponding class in the neural-net

classifier. Detections of these species have hence been unavoidably mislabeled as either a dif-

ferent odontocete class or noise; the effect of this is likely small but difficult to quantify without

labelled data for these species.

Noise floor differences between earlier and later models of the HARP recording systems

used in this study resulted in differences in detectability for echolocation clicks below 125 dBpp

re 1 μPa. Over the course of this study the received level threshold was therefore increased

from 115 to 125 dBpp re 1 μPa to mitigate detectability-related artifacts over the 12 year period.

This reduced the dataset size by approximately 10%.

The success of the machine learning tools applied here on other datasets may be somewhat

dependent on the noise floor. The HARP data used in this case had a very low broad band

noise floor (i.e., high signal to noise ratio) for most deployments, facilitating the use of lower

amplitude detections for classification. Higher noise recordings, such as those collected using

moving towed arrays, may further limit similar analyses to detections with higher received

levels.

The development of the input data for the Cuvier’s beaked whale neural network class in

this study used examples from Hawaiian HARP data, augmented with additional examples

from Southern California. This process seemed to have successfully complemented available

Hawaiian examples without causing classifier confusion, as Cuvier’s beaked whale had some of

the highest accuracies across all three sites, as well as for all sites combined (> 99% in all cases)

(Table 3). Future studies employing these methods might consider the efficacy of augmenting

regionally developed classes with additional data from other locations, particularly in the case

of species that are not represented in local clusters but are known to be present. When aug-

menting existing regional classes with additional global examples, researchers must also be

wary of species whose echolocation clicks have shown significant regional variation [56], as

well as species that produce multiple, distinct types of echolocation clicks [57], which should

perhaps not be combined together for classification purposes.

For other classes, training and testing data were augmented using noise to reach a total of

5000 example bins. It is possible that this may introduce artifacts into the data, which can then

be learned by the network [35]. However, this process seemingly did not cause issues for the

classifier created in this study; inspection of augmented data revealed no noticeable spectral

artifacts, and classification accuracy was high amongst both augmented and non-augmented

types. As an example, one can compare performance of the non-augmented stenellid type 1

class to performance of the augmented Blainville’s beaked whale class on novel data (Table 3).

In all three cases, accuracy and recall across sites was>94%, suggesting that augmenting input

features did not have harmful effects on classifier performance. The classifier produced in this

process demonstrated a high degree of classification accuracy on novel data across sites and

classes, and fairly high (> 66% in all cases) values for recall (Table 3). The success of these aug-

mentation techniques imply that these methods can be useable on smaller datasets. However,

network training on less than a few hundred examples of determined types, with no ability to

augment these types using additional data, should proceed with caution. The clustering and
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neural network steps employed here were developed to expedite processing of large acoustic

datasets and are best suited to this task.

In some cases, examination of confusion matrices provides useful context for performance

metric values. For false killer whales, confusion matrices at all sites revealed that the low preci-

sion seen for this type was mainly due to bins of noise being mislabeled as false killer whale

(Tables 3–6). This result was most likely due to the spectral similarities between the false killer

whale click type and detections attributed to boats and sperm whales that were part of the

input noise class, particularly after applying a 10 kHz high-pass filter. This issue was less pro-

nounced at Kaua‘i, where false killer whales were more common relative to noise detections

(Table 3; Table 6).

Other recent classification efforts of false killer whale have found success using a variety of

vocalizations instead of only echolocation clicks, however, accuracy was slightly reduced when

attempting to classify multiple species instead of only false killer whales and a conglomerate

outgroup of other odontocetes [26]. Due to the regional significance of this species, and their

rarity in the dataset, manual data verification was required to remove false positives from false

killer whale time series before discussion of relative acoustic presence in this dataset, as men-

tioned in the results section of this study. This adjusted methodology highlights how the classi-

fier can still be used to efficiently select time periods of presence for this type (i.e., high recall).

Though the false positive rate on these detections was high (i.e., low precision), the additional

manual checking required to remove these was much faster than manual logging of the entire

dataset.

Low precision in classes other than false killer whales and types with few bins evaluated

(e.g., Cuvier’s beaked whale at Kona; Table 3) occurred primarily for short-finned pilot whale

and bottlenose dolphin/melon headed whale types (Table 3). Though the number of manually

labelled bins for short-finned pilot whale class 1 at PHR exceeded the threshold for evaluation

Table 4. Classifier confusion Matrix- Kona.

False killer

whale

Rough-

toothed

dolphin

Short-finned

pilot whale 1

Short-finned

pilot whale 2

Tt/

Pe

Blainville’s

beaked whale

Cuvier’s

beaked whale

Stenellid

1

Stenellid

2

Kogia
spp.

Noise

False killer whale 285 0 25 8 1 0 0 0 0 0 5

Rough-toothed

dolphin

1 389 19 14 2 1 0 33 3 0 6

Short-finned

pilot whale 1

45 23 885 5 6 2 0 14 2 0 6

Short-finned

pilot whale 2

6 3 5 446 0 0 0 2 0 0 1

Tt/Pe 0 14 16 11 161 1 0 3 7 0 0

Blainville’s

beaked whale

0 0 0 1 1 218 1 3 0 1 2

Cuvier’s beaked

whale

0 0 0 0 0 0 5 0 0 0 1

Stenellid 1 1 24 19 17 35 3 5 5713 16 1 6

Stenellid 2 0 1 0 1 0 0 0 0 727 0 0

Kogia spp. 0 0 0 0 1 0 0 0 0 249 0

Noise 250 10 25 47 8 15 0 67 19 15 3662

Confusion matrix showing the number of 5 minute bins (from novel data not used in training/testing/validation) labelled as each class. Diagonal cells across classes

show the number of correctly labelled positive bins for that class. Cell(i,j) is the number of bins of i that were labelled j by the network.

https://doi.org/10.1371/journal.pone.0266424.t004
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Table 5. Classifier confusion Matrix- Pearl and Hermes Reef.

False killer

whale

Rough-

toothed

dolphin

Short-finned

pilot whale 1

Short-finned

pilot whale 2

Tt/

Pe

Blainville’s

beaked whale

Cuvier’s

beaked whale

Stenellid

1

Stenellid

2

Kogia
spp.

Noise

False killer whale 83 1 2 0 0 0 0 0 0 0 0

Rough-toothed

dolphin

11 754 21 1 4 0 0 7 0 2 1

Short-finned

pilot whale 1

11 0 58 0 2 0 0 1 0 0 0

Short-finned

pilot whale 2

1 1 0 8 1 0 0 0 0 0 0

Tt/Pe 0 33 0 0 254 0 0 20 0 0 0

Blainville’s

beaked whale

0 0 8 7 2 1986 0 1 0 2 2

Cuvier’s beaked

whale

0 0 4 7 1 1 531 0 1 0 1

Stenellid 1 0 4 2 0 14 0 0 344 0 0 0

Stenellid 2 0 0 0 0 0 0 0 0 24 0 0

Kogia spp. 0 0 0 0 0 0 0 0 0 13 0

Noise 132 3 4 8 1 3 0 8 0 8 1187

Confusion matrix showing the number of 5 minute bins (from novel PHR data not used in training/testing/validation) labelled as each class. Diagonal cells across classes

show the number of correctly labelled positive bins for that class. Cell(i,j) is the number of bins of i that were labelled j by the network.

https://doi.org/10.1371/journal.pone.0266424.t005

Table 6. Classifier confusion Matrix- Kaua‘i.

False killer

whale

Rough-

toothed

dolphin

Short-finned

pilot whale 1

Short-finned

pilot whale 2

Tt/

Pe

Blainville’s

beaked whale

Cuvier’s

beaked whale

Stenellid

1

Stenellid

2

Kogia
spp.

Noise

False killer whale 242 14 1 0 0 0 0 0 0 0 2

Rough-toothed

dolphin

20 4450 38 7 29 0 1 44 9 0 4

Short-finned

pilot whale 1

5 9 212 0 4 0 0 0 0 0 0

Short-finned

pilot whale 2

2 7 1 24 0 0 0 0 1 0 1

Tt/Pe 0 3 5 0 182 0 0 2 0 0 0

Blainville’s

beaked whale

0 0 0 1 0 90 0 0 0 0 0

Cuvier’s beaked

whale

0 0 0 0 0 0 0 0 0 0 0

Stenellid 1 0 4 1 3 8 0 0 1199 0 0 4

Stenellid 2 0 1 0 1 1 0 1 0 179 0 0

Kogia spp. 0 0 0 0 0 0 0 0 0 52 0

Noise 50 12 10 28 2 1 0 9 0 5 1088

Confusion matrix showing the number of 5 minute bins (from novel Kaua‘i data not used in training/testing/validation) labelled as each class. Diagonal cells across

classes show the number of correctly labelled positive bins for that class. Cell(i,j) is the number of bins of i that were labelled j by the network.

https://doi.org/10.1371/journal.pone.0266424.t006
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(50 bins), it was still fairly low (nBin = 72; Table 3). Based on precision values for this type at

the other two sites, low bin number is considered the most likely reason for lower precision

observed in this case. For the bottlenose dolphin/melon-headed whale type, confusion exists

primarily with short-finned pilot whale, stenellid, and rough-toothed dolphin types (Tables 4–

6). This is potentially due to several factors. Differences between the structure of the training

set, which contained equal proportions of each type, and the real data, where types may be less

common at certain sites than the network expects (e.g., rough-toothed dolphin at Kona) may

increase confusion. Additionally, the ICI distribution and overall frequency range of rough-

toothed dolphin, short-finned pilot whale, and bottlenose dolphin/ melon-headed whale clicks

were fairly similar, as was the spectral content of rough-toothed dolphin, bottlenose dolphin/

melon-headed whale, and stenellid clicks, particularly in low received level encounters where

the higher frequency content of stenellid clicks was not as prevalent. Confusion amongst these

classes was lower at Kaua‘i than at Kona, potentially due to the lower level of vessel presence at

this site. The Kona site has an overall much higher noise background than the Kaua‘i site

related to the commonality of ships and echosounders. These noise sources may alter spectral

content of click mean spectra as well as ICI distributions by introducing false positive detec-

tions, hence increasing network confusion. There is not much that can be done with the cur-

rent classifier structure to reduce this confusion, though it is notable that even in the most

drastic case (i.e., bottlenose dolphin/melon headed whale at Kona), the precision value was still

fairly high (74.9%). Network confidence, which accompanies all labels from the neural net-

work used in this study, could potentially be used in future applications of this dataset to

improve upon these false positive rates by only using detections above a certain confidence

threshold.

Using the machine learning methods applied in this study, we were able to develop a cata-

logue of click types for the Hawaiian Islands region and attribute those click types to species,

including the novel description of a click type for rough-toothed dolphins. We were then able

to develop and implement a neural-net based classifier, from which we were able to label

encounters with 8 or more species of odontocetes in 15 instrument years of passive acoustic

data. The success of this classifier in labeling passive acoustic data from multiple sites demon-

strates its efficacy for analyzing existing and future acoustic datasets from this region, as well

as potentially from other regions where these species are thought to be present. Future work

related to improving the success of these methods in identifying and classifying echolocation

clicks might consider a tiered approach, in which original clustering and labelling take place at

a more generalized level (e.g., ‘unidentified dolphin’, ‘beaked whale’, ‘ship’). Then, parsing of

subtypes could be completed using additional clustering as well as other methods that have

proved useful here such as comparison to known click records, species patterns, and auxiliary

data. Such a method would likely minimize misclassifications as well as avoid the issue of spe-

cies without a specific class being unavoidably mislabeled as a different odontocete or poten-

tially as noise. At present, however, a usable workflow has not yet been developed for the

method proposed above.

In this paper, knowledge of rough-toothed dolphin diel behavior was used as additional evi-

dence in the attribution of click type LF1 to this species. Further research using the timeseries

produced in this study may find that examining diel patterns helps bolster the classifications

made here. This may be particularly true for the stenellid type, as spinner dolphins are active

nearly exclusively at night and spend their days in shallow resting bays [58], whereas spotted

dolphins, while still more active at night, are somewhat active during the day as well [3, 59]. In

addition to this, Blainville’s beaked whales have demonstrated diel and lunar variation in activ-

ity [20, 60, 61], short-finned pilot whales have been noted to move inshore/offshore in relation

to the lunar cycle [62], and differences in diel presence among sites may help determine the
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makeup of the bottlenose dolphin/melon headed whale class. For Kogia spp. and some others,

comparisons to timeseries produced using subsets of this HARP dataset (e.g., [63]) will provide

additional useful context for those derived using the methods of this paper. For false killer

whales, marked presence during night-time hours may help explain the mismatch between

rare sightings and common presence in the Kaua‘i HARP dataset (31% of days with presence);

this could also be investigated using existing satellite tag data [64, 65] to see whether they are

more likely to use the area off western Kaua‘i during night-time hours. Work on describing

and exploring some of these comparisons is ongoing and will be addressed more completely in

a future paper. The records developed here can also be used in species monitoring efforts as

well as to answer complex questions about animal behavior, habitat requirements, and ecosys-

tem relationships of odontocetes in the Hawaiian Islands.

Supporting information

S1 Table. Recording schedule. Recording schedule for deployments from all sites. For one

deployment (denoted by an asterisk in the duty cycle column), the duty cycle was inconsistent

due to a system malfunction, resulting in about 1/3 time on. Depth is given as the seafloor

depth at the deployment location, to the nearest 10 meters. Deployments with a 25 kHz cross-

over between the low and high frequency hydrophones are bolded.

(PDF)

S1 File. Supporting information for click type validation. Information from relevant previ-

ous studies used to validate the attribution of click types in this study to known species or spe-

cies groups.

(DOCX)
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49. Rice AC, Baumann-Pickering S, Širović A, Hildebrand JA, Rafter M, Thayre BJ, et al. Passive acoustic

monitoring for marine mammals in the SOCAL Range Complex April 2016—June 2017. MPL Technical

Memorandum #636. 2018. http://cetus.ucsd.edu/Publications/Reports/RiceMPLTM636-2019.pdf

50. Rankin S, Oswald JN, Simonis AE, Barlow J. Vocalizations of the rough-toothed dolphin, Steno breda-

nensis, in the Pacific Ocean. Marine Mammal Science. 2015. https://doi.org/10.1111/mms.12226

51. Bradford AL, Oleson EM, Forney KA, Moore JE, Barlow J. Line-transect abundance estimates of ceta-

ceans in U.S. waters around the Hawaiian Islands in 2002, 2010, and 2017. Service. USNMF, (U.S.)

PIFSC, (U.S.) SFSC, Region PI, editors. 2021. https://doi.org/10.25923/daz4-kw84

52. Becker EA, Forney KA, Oleson EM, Bradford AL, Moore JE, Barlow J. Habitat-based density estimates

for cetaceans within the waters of the U.S. Exclusive Economic Zone around the Hawaiian Archipelago.

2021. https://doi.org/10.25923/x9q9-rd73

53. Shaff JF, Baird RW. Diel and lunar variation in diving behavior of rough-toothed dolphins (Steno breda-

nensis) off Kaua‘i, Hawai‘i. Marine Mammal Science. 2021; 37: 1261–1276. https://doi.org/10.1111/

mms.12811

PLOS ONE Hawaiian Islands odontocete echolocation click classification using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0266424 April 12, 2022 23 / 24

https://doi.org/10.1016/j.ecoinf.2020.101094
https://doi.org/10.1016/j.ecoinf.2020.101094
https://doi.org/10.1016/j.apacoust.2010.05.016
https://doi.org/10.1371/journal.pone.0264988
http://www.ncbi.nlm.nih.gov/pubmed/35324943
https://doi.org/10.1371/journal.pone.0199431
http://www.ncbi.nlm.nih.gov/pubmed/29928009
https://doi.org/10.1371/journal.pone.0019269
https://doi.org/10.1371/journal.pone.0019269
http://www.ncbi.nlm.nih.gov/pubmed/21556355
https://doi.org/10.1121/1.3508074
https://doi.org/10.1121/1.3508074
https://doi.org/10.1214/009053607000000505
https://github.com/MarineBioAcousticsRC/Triton/wiki/LabelVis
https://doi.org/10.3389/fmars.2020.590273
http://www.ncbi.nlm.nih.gov/pubmed/35004707
https://doi.org/10.1371/journal.pcbi.1007598
http://www.ncbi.nlm.nih.gov/pubmed/31929520
https://doi.org/10.25923/7avn-gw82
http://cetus.ucsd.edu/Publications/Reports/RiceMPLTM636-2019.pdf
https://doi.org/10.1111/mms.12226
https://doi.org/10.25923/daz4-kw84
https://doi.org/10.25923/x9q9-rd73
https://doi.org/10.1111/mms.12811
https://doi.org/10.1111/mms.12811
https://doi.org/10.1371/journal.pone.0266424


54. Hildebrand JA, Frasier KE, Baumann-Pickering S, Wiggins SM, Merkens KP, Garrison LP, et al.

Assessing seasonality and density from passive acoustic monitoring of signals presumed to be from

pygmy and dwarf sperm whales in the gulf of Mexico. Frontiers in Marine Science. 2019;6. https://doi.

org/10.3389/fmars.2019.00066

55. Baird RW, Schorr GS, Webster DL, Mcsweeney DJ, Hanson MB, Andrews RD. Movements of two sat-

ellite-tagged pygmy killer whales (Feresa attenuata) off the island of Hawai’i. Marine Mammal Science.

2011. https://doi.org/10.1111/j.1748-7692.2010.00458.x

56. Soldevilla MS, Baumann-Pickering S, Cholewiak D, Hodge LEW, Oleson EM, Rankin S. Geographic

variation in Risso’s dolphin echolocation click spectra. The Journal of the Acoustical Society of America.

2017. https://doi.org/10.1121/1.4996002 PMID: 28863585

57. Soldevilla MS, Wiggins SM, Hildebrand JA. Spatio-temporal comparison of Pacific white-sided dolphin

echolocation click types. Aquatic Biology. 2010; 9: 49–62. https://doi.org/10.3354/ab00224

58. Norris KS. The Hawaiian spinner dolphin. Choice Reviews Online. 1995; 32: 32-3310-32–3310. https://

doi.org/10.5860/choice.32-3310

59. Baird RW, Ligon AD, Hooker SK, Gorgone AM. Subsurface and nighttime behaviour of pantropical spot-

ted dolphins in Hawai’i. Canadian Journal of Zoology. 2001; 79: 988–996. https://doi.org/10.1139/cjz-

79-6-988

60. Baird RW. Behavior and ecology of not-so-social odontocetes: Cuvier’s and Blainville’s beaked whales.
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