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Determining population status to inform mitigation of anthropogenic threats requires 
statistical approaches that investigate spatial and temporal variation. In the face of 
climate change it is increasingly important to differentiate between changes in popula-
tion size and redistributions of populations. This is especially true for wide-ranging 
species such as the blue whale. Abundance of eastern North Pacific blue whales has 
previously been estimated using (non-spatial) closed capture–recapture and distance 
sampling methods, but the estimates show opposite and diverging trends over the 
last 30 years. Evidence that the distribution has been expanding could explain the 
apparent disparity, due to the confounding effects of spatial variation in sampling 
and the changing distribution. To investigate this, we apply, for the first time, spatial 
capture–recapture (SCR) methods to blue whale photo-identification data from small 
boat surveys to estimate abundance. The study area was defined as the length of the 
continental USA coastline, extending approximately 100 km offshore. Average annual 
effort from 1991 to 2023 was 97 days, resulting in 7358 sightings of 1488 unique 
individuals. We find significant support for non-linear spatiotemporal variation. In 
all years, there were higher densities at lower latitudes but there were notable decadal 
cyclical fluctuations in the number of animals using the study area. This large variation 
in the numbers of animals using these waters motivates further study into the relation-
ship with environmental changes. Our results are an important step in spatially explicit 
modelling of observational blue whale data, which highlight the value of including 
spatial and temporal data and are relevant to any marine mammal species monitored 
using photo-identification.
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Introduction

Effective wildlife conservation requires reliable estimates of 
population size, but also an understanding of what influ-
ences the spatial and temporal distributions of populations 
(Sequeira et al. 2019, Grémillet et al. 2022, Tourani 2022). 
This information is critical to effectively implement conser-
vation strategies and to manage impacting human activities 
which, in recent years, is more important than ever as we see 
increasing shifts driven by climate change (Hazen et al. 2013, 
Becker et al. 2019, Zhao et al. 2019). Monitoring to satisfy 
this dual focus in both space and time is logistically challeng-
ing and therefore rare, especially in populations with large 
and variable distributions (Stokes  et  al. 2010, Clare  et  al. 
2019, Sequeira et al. 2019).

Baleen whales (Mysticeti) are one such taxonomic group, 
with ranges spanning thousands of kilometres and a variable 
distribution in feeding areas (Stone et al. 1990, Corkeron and 
Connor 1999, Grémillet et al. 2022). Accurately predicting 
spatiotemporal density is particularly important for these spe-
cies as populations remain in variable states of recovery fol-
lowing severe depletion by commercial whaling up until the 
20th century (Clapham et al. 1999), and recovery has often 
been limited by anthropogenic threats (Rockwood et al. 2018, 
Tackaberry et al. 2022, NOAA 2024). Management actions 
can reduce the impact of these threats but require a good 
understanding of the distribution of the populations so they 
can be deployed at the most impactful locations and times 
(Foley  et  al. 2010, Abrahms  et  al. 2019, Rockwood  et  al. 
2020). Population abundance of these species has typically 
been estimated using capture–recapture methods applied 
to photo-identification data or distance sampling meth-
ods applied to visual line transect survey data, providing 
time-specific estimates of abundance in a specified area 
(Carretta et al. 2020). Most conventional capture–recapture 
methods do not include spatial information, so changes in 
estimates over time could be driven by actual population size 
change or population redistributions, which are not detected 
in non-spatial estimates (Amstrup et al. 2010, Tourani 2022). 
Distance sampling accommodates spatial variation within the 
defined surveyed area, but the scale of surveys required for 
large marine animals is logistically and financially challeng-
ing, and when surveys are conducted, they rarely have ade-
quate statistical power to robustly estimate population trends 
(Taylor et al. 2007, Boyd and Punt 2021).

One of the most intensively studied baleen whale popula-
tions is the eastern North Pacific (ENP) blue whale popula-
tion Balaenoptera musculus (Bailey et al. 2009, Barlow 2016, 
Calambokidis and Barlow 2020) but, despite this, abundance 
estimates have shown uncertain and conflicting trends since 
the first estimates in the early 1990s. Estimates using closed 
capture–recapture methods applied to photo-identification 
data over a rolling 4-year window show a stable to increas-
ing population, but design-based estimates and estimates 
from species distribution models, both based on line transect 
data, suggest a stable or possibly decreasing trend (Barlow 
2016, Becker et al. 2020, Calambokidis and Barlow 2020, 

Carretta et al. 2022). The limitations of each method mean it 
is challenging to make conclusive inferences about the popu-
lation trend. The range of ENP blue whales extends from the 
Costa Rica Dome up to the Gulf of Alaska, but animals are 
encountered in their largest numbers off the United States 
west coast (USWC) (Bailey et al. 2009, Calambokidis et al. 
2009a), which is an important summer and autumn feeding 
area for this population (Calambokidis  et  al. 1990, 2024). 
Most individuals then migrate south in winter (Bailey et al. 
2009, Calambokidis  et  al. 2009a). An increase in photo-
identification encounters off the west coast of Canada and 
in the Gulf of Alaska in the 2000s could reflect a return of 
the population to more northerly waters during the summer 
feeding months, as whales were known to be present in those 
areas pre-commercial whaling, although patterns are not well 
understood (Calambokidis  et  al. 2009a). The difference in 
abundance estimates from capture–recapture methods and 
those based on line transect data could be explained by a 
shifting distribution. The intermittent nature and uncer-
tainty of abundance estimates using transect data make 
confirming a clear trend challenging, but capture–recapture 
methods lack spatial information to allow a shift in distribu-
tion to be assessed. There is thus a need to apply a modelling 
framework that can robustly estimate trends in abundance 
across both space and time (Tourani 2022).

One increasingly applied modelling framework that 
addresses these elements is spatial capture–recapture (SCR). 
SCR extends conventional capture–recapture models, explic-
itly modelling spatial variation in both the distribution and 
detectability of individuals that addresses the assumption 
from simple conventional capture–recapture models that ani-
mals have the same probability of being captured across the 
study area (Efford 2004, Royle et al. 2014). This assumption 
is commonly violated, thus SCR models should reduce bias in 
abundance estimates (Efford 2004, Royle et al. 2014, 2018). 
In addition, because SCR inherently accounts for individual 
variation in capture probabilities, we can explore how the 
population is distributed across the study area (Efford 2004, 
Royle  et  al. 2014). This provides a much richer picture of 
population abundance when compared to traditional cap-
ture–recapture models. SCR also offers benefits over distance 
sampling methods, through improved precision and accuracy 
and an enhanced ability to identify trends, as transect survey 
frequency is often limited by financial restrictions and photo-
identification is collected more consistently (Taylor  et  al. 
2007, Crum et al. 2021).

SCR models have been most widely used in terrestrial 
systems using structured data collected from fixed locations 
(e.g. camera traps or hair snares; Royle et al. 2018, Tourani 
2022, Moqanaki  et  al. 2023). However, SCR can read-
ily be applied in any system (e.g. freshwater: Raabe  et  al. 
2014, Sutherland  et  al. 2018; marine: Marques  et  al. 
2012, Pirotta et al. 2015, Bradley et al. 2017) using a vari-
ety of data sources. For example, SCR has been applied 
to unstructured data (data not collected from fixed loca-
tions), retrofitting structured ‘traps’ to data collected from 
a known location (Royle  et  al. 2011, Sutherland  et  al. 
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Figure 1. Left: map of study area. Darker grey area represents the state-space or mask (S) (see Model definition), trap locations are marked 
by black dots. Centre: effort summary by each degree of latitude; scale bar describes number of days of effort per year. Right: summary of 
encounters (captures) by each degree of latitude; scale bar describes number of encounters per year.

2018, Broekhuis  et  al. 2021). To date, SCR studies using 
unstructured data in marine systems have been in relatively 
small study areas (Pirotta et al. 2015, Glennie et al. 2021, 
Winton  et  al. 2023), with the exception of Curtis  et  al. 
(2022) who developed a linear SCR model estimating the 
abundance of humpback whales Megaptera novaeangliae in 
their Central American wintering grounds. However, this 
model required adaptations due to a lack of effort data  
and was focused on generating a single estimate rather than 
a trend.

This study aims to apply SCR models to a large-scale 
marine system, modelling unstructured data with associated 
effort over a long time series to investigate spatiotemporal 
variation in density, which could be applicable for many 
wide-ranging marine species. We use SCR models applied to 
photo-identification data of ENP blue whales collected from 
small boat surveys along the continental USWC between 
1991 and 2023 to:

1. explore spatiotemporal variation in density to determine if 
the spatial distribution of this population has changed;

2. estimate temporal changes in the population size of ani-
mals using the USWC;

3. explain inconsistencies between previous capture–recap-
ture and distance sampling estimates; and

4. explore the potential to use SCR as a tool for informing 
management of human activities that might impact wide-
ranging marine populations.

Material and methods

Data collection
Data used in this analysis were collected along the continen-
tal USWC between 1991 and 2023 by Cascadia Research 
Collective (CRC), a non-profit cetacean research organisation 
(Calambokidis and Barlow 2004, 2020, Calambokidis et al. 
2009b). Data were collected every year, with most surveys 
conducted between June and November (Calambokidis and 
Barlow 2004, 2020, Calambokidis  et  al. 2009b). Surveys 
extended along the USWC from 32°N to 49°N, and gener-
ally did not extend further than 50 km offshore from the 
daily launch point (Fig. 1). Surveys were largely conducted in 
5.3–5.9 m rigid-hull inflatable boats equipped with outboard 
engines (Calambokidis et al. 2009b). Surveys aimed to maxi-
mize humpback and blue whale encounters while attempting 
to maintain broad temporal and geographic coverage along 
the USWC. When blue whales were encountered, photos 
were taken of their flanks, aiming to get images of both sides 
if possible. Up to 2004, images were taken using 35 mm film 
cameras with 300-mm telephoto lenses (Calambokidis and 
Barlow 2004). Since then, digital images have been taken 
using digital SLR cameras primarily with 100–400 mm or 
70–200 mm lenses.

Data processing and preparation
Image quality was assessed based on a three-tier quality cri-
terion and only images of suitable quality were included in 
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the database for analysis (Calambokidis et al. 2009b). Photo-
identification images were used to match individual whales 
based on skin pigmentation patterns on the flank and back 
of both sides of the whale (Sears  et  al. 1990, 2013). Only 
animals with a right side identified were used in the analysis 
to avoid duplication (Vernazzani et al. 2017, Whittome et al. 
2024). Matches were verified by at least two people and 
then included in the photo-identification catalogue with 
each whale being allocated a unique identification number 
(Calambokidis and Barlow 2004).

The study area was defined as the continental United 
States (US), and we used all sightings from surveys conducted 
between 32.3°N and 48.4°N latitude (Fig. 1). As the photo-
identification data are unstructured, we created effective 
‘traps’ (sensu Sutherland et al. 2018). A grid was applied to an 
area which spanned the extent of the encounters, and the cen-
troid of each grid cell was considered the ‘trap’ (Fig. 1) with 
encounters allocated to the closest trap. We tested a range of 
grid cell sizes from 0.05° to 0.7° (equivalent to degrees lati-
tude) and chose a resolution that maximised spatial captures 
while minimising computation (Supporting information). 
A cell size of 0.4° was selected which was equivalent to 0.4 
degrees latitude or approximately 44 km.

To ensure temporal independence between observations, 
we thinned the data such that if an animal was seen in the 
same trap, in the same calendar week, only one record was 
retained – i.e. we assumed that observations separated by 1 
week or more were independent. Each year was considered 
a ‘session’, numbered from 1 (1991) to 33 (2023), and we 
summarized the detection data (i.e. encounters of individu-
als) as the total number of independent detections in each 
year (where a year represented a single occasion).

A major benefit of SCR is the ability to summarise, and 
consider explicitly, the spatial sampling effort that gave rise 
to the data. Effort data were only available at the daily sum-
mary level for the full study period (Fig. 1). To create an 
approximate measure of effort, we took the starting point of 
each survey day and assumed that any traps within 50 km 
north or south of a straight line from the survey start point 
were ‘operational’ and thus able to record detections (see the 
Supporting information for encounters per unit effort). We 
also calculated the number of weeks each latitudinal band 
(and hence traps) was surveyed and used this metric as a mea-
sure of annual sampling effort.

Model definition
The spatial capture–recapture method is a hierarchical model 
with a process sub-model and a conditional observation sub-
model (Efford 2004, Royle and Young 2008). The process 
model is a spatially explicit Poisson point process model 
that describes the spatial distribution of latent, or unobserv-
able, individual activity centers (s). The observation model 
is a spatially explicit model for how the detection arises and 
is conditional on the underlying process model. The indi-
vidual spatial encounter data, y, provide information about 
the location and number of activity centers (and hence the 
point process model) and how detection varies with distance 

from the (latent) activity center. Here we adopt a maximum 
likelihood approach to estimation (Borchers and Efford 
2008), and because activity centers are latent, the model is an 
integrated likelihood where the integration is over the whole 
area where activity centers could be located (Borchers 2012). 
Below we describe the multi-session maximum likelihood 
SCR approach to estimate spatiotemporal variation in popu-
lation density (Sutherland et al. 2019).

We treat each year as an independent and closed session, 
and the observation data are spatially referenced counts 
denoting the number of detections of an individual (i) at a 
trap (j). These counts were treated as Poisson random vari-
ables (Royle et al. 2014):

yij ij� Poisson �� �

We assumed each individual has an activity center (si), and 
that the rate of an individual being detected in a trap (λij) was 
a function of the Euclidean distance between the individual’s 
activity center (si) and the location of trap j (xj). Activity cen-
ters were fixed within years and independent between years. 
Here we assumed the standard half-normal encounter model 
which conditional on its latent unknown activity center si:
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where λ0 is the baseline expected number of detections, σ is 
a spatial parameter that determines the distance over which 
encounter rates decline to 0, and d(xj,si) is the Euclidean dis-
tance between an individual’s activity center and a trap.

In this formulation of the model, λ0 and σ are param-
eters to be estimated and can be modelled as a function of 
covariates using standard GLM-like approaches. In this 
study, we were interested in accounting for interannual varia-
tion in detectability, which we did using a non-parametric 
smooth spline term for λ0. We applied the standard s() thin 
plate regression spline (Wood 2003). The temporal smooth 
allowed for variation in detectability and provided efficiency 
when compared to estimating λ0 separately for each year. We 
were also interested in accounting for heterogeneity in detect-
ability, which we did using a 2-class finite mixture model for 
both σ and λ0 (Pledger 2000, Pledger and Phillpot 2008, 
Cubaynes et al. 2012). The data were collected largely within 
50 km of the coast, but ENP blue whales also inhabit waters 
further offshore (albeit it in lower numbers; Barlow 2016). 
The 2-class mixture parameter allowed for variation in cap-
ture probability.

While individual activity centers were unobserved (a 
latent process), the spatial information contained within 
the detection data allowed the position of the activity cen-
ters to be inferred. This was formalized via a point process 
model used to describe the underlying spatial distribution 
of activity centers, and hence individuals, across the study 
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area (Efford 2004, Royle et al. 2014, Sutherland et al. 2018). 
This required that the study area was explicitly defined, and 
was done by defining a state-space, or mask (S) (Fig. 1). The 
mask was defined as a buffer area around the trap array that 
contained all individuals which could have been sampled 
(Royle et al. 2014, Sollmann et al. 2016), and this area was 
gridded to generate points, where each point is the centroid 
of a pixel. Here we used a 200-km buffer around the traps 
with point spacing of 10 km, providing adequate space to 
reflect the distances blue whales can travel. The eastern edge 
of the buffer was clipped to remove points on land.

SCR models typically assume the point process model is 
homogenous, such that the activity centers are assumed to 
be uniformly distributed across S. Here our objective was 
to quantify temporal trends in population density, but also 
spatial variation in density. As such, we modelled density as 
a smooth function of both latitude (space) and year (time) 
(Efford 2024). In summary, our SCR model was defined as 
follows:

log ,� � �0 0 1i ig s� � � � � � �year

log � � �i ig� � � �0 1

log latitude, yearD sp� � � � � ��0

where λ0,i represents the rate of detecting an individual at 
its activity center as a log-linear smooth function over time, 
where α0 is the intercept, α1 is the difference in detection 
between the latent groups (classes) 1 and 2, where g = 0 for 
group 1 and g = 1 for group 2, and s(year) represents the 
smooth function over time. We note that here λ0 is the per 
week detection rate which allows us to account for between 
trap variation in effort (number of weeks ranged from 0 – 
i.e. traps with no effort in a year – to 14 – i.e. traps that 
had sampling in 14 different weeks). σi represents the rate at 
which detection declines with distance from the activity cen-
ter based on a linear regression with intercept (β0) and β1g i  
indicates which of two groups the individual belongs to as 
described for λ. Density (D, whales per 10 km2) at each state 
space pixel (p) is a log-linear function with intercept (δ0) and 
a two-dimensional thin plate regression spline s() across lati-
tude and year, to allow for flexibility in both dimensions in an 
interactive way. Note that the process model is a spatial point 
process model and therefore total abundance for the entire 
state-space can be derived by summing over all the pixels of 
the point process, and because the area is an explicit part of 
the model, this is the absolute abundance for that area.

A series of SCR models were run to estimate the optimal 
number of knots (k) or inflexion points for the smooth terms 
on density and baseline detection rate. Thin plate splines have 
a knot at each covariate value and then an eigen decomposi-
tion is used to select the first k eigen vectors which contain 
most of the variance (Wood 2003). Our objective was to 

quantify spatiotemporal variation in density while account-
ing for interannual variability in detectability. To offer the 
model maximal flexibility, we tested k values up to the point 
where the data no longer supported additional flexibility (i.e. 
the models no longer converged). For baseline detection, the 
maximum value at which the model converged was k = 3 so 
this was selected for all models. For density, the maximum 
value at which the model converged was k = 10, and model 
selection using Akaike’s information criterion (AIC) sup-
ported k = 10 over smaller numbers of knots (Supporting 
information; Sutherland et al. 2023). All analysis was carried 
out in R ver. 4.4.1 (www.r-project.org) using package ‘secr’ 
(Efford 2024).

There has been limited development of goodness-of-fit 
tests for maximum likelihood-based SCR models, and the 
available options only address a narrow range of types of lack-
of-fit for simple SCR models (i.e. models without a combina-
tion of splines and finite mixture models; Choo et al. 2024). 
In SCR models, the activity centers can be clumped (over-
dispersed) relative to the Poisson distribution, which would 
cause the sampling variance of the density estimates to be 
underestimated (Borchers and Efford 2008, Efford 2024). In 
lieu of an appropriate goodness-of-fit test, we applied a vari-
ance inflation adjustment to each session based on Fletcher’s 
c-hat (Fletcher 2012), which is a measure of overdispersion in 
the data (Efford 2024). It should be noted that this is a crude 
measure, and worst case scenario, as it ignores the complexity 
of the observation model, which was specifically adjusted to 
account for heterogeneity (Pledger 2000). The adjusted vari-
ance values demonstrate the maximum possible uncertainty 
so should be interpreted with caution, although the model 
point estimates are unaffected by the variance inflation. 
Encouragingly, though, investigations of whether this biases 
density estimates have shown that SCR is robust to such non-
independence (Reich and Gardner 2014, Bischof et al. 2020).

Comparison of abundance estimates
As described above, some estimates of abundance have already 
been generated for the ENP blue whale population. These 
include line transect data modelled as design-based estimates 
and in species distribution models, and closed capture–
recapture estimates over a rolling 4-year window modelled 
using Chao (Mth) and Darroch (Mt) models (Barlow 2016, 
Becker et al. 2020, Calambokidis and Barlow 2020). The line 
transect data represent a similar geographical extent to the 
mask definition (S) for the SCR model. However, the cap-
ture–recapture estimates use photo-identification data which 
span the full range of the population, expanding outside the 
USWC. In addition to the CRC small-boat survey data, these 
estimates also use other contributor data (e.g. other opportu-
nistic sources including from whale watch platforms), which 
more than double the number of encounters used compared 
to the photo-identifications used in the SCR model. As these 
contributor data do not have effort associated, they were not 
included in the SCR model. To allow a more direct com-
parison to the abundance estimates generated from the SCR 
model, Chao and Darroch capture–recapture estimates were 
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generated from the CRC survey data geographically lim-
ited to the continental USWC only (see Calambokidis and 
Barlow 2020 for method).

Results

SCR model results
Between 1991 and 2023 there was a total effort of 3191 days, 
averaging 97 days per year, ranging from 29 days in 1993 to 
190 days in 2013. During this time there were 7358 encoun-
ters of 1488 individuals.

The 2-class mixture parameter on detection was included to 
account for unobserved heterogeneity. The mixture parameter 
indicated the probability of randomly selecting an individual 
from the first group was 0.429 (95% confidence intervals 
(CIs hereafter): 0.338–0.525), suggesting the two groups are 
split fairly equally in the population (Table 1). The detection 
model showed significant support for non-linear variation 
as all smooth terms had values different from 0 (Table 1). 
The difference in the baseline encounter rate (λ) between the 
two groups was significant (−4.181, CIs: −4.423 to −3.939; 
Table 1). Using the first year as a reference for illustration, this 
translates to an encounter rate of 0.120 (CIs: 0.101–0.143) 
for group 1 and 0.0018 (CIs: 0.0012–0.0028) for group 2. 
The difference in the space use parameter (σ) between the two 
groups was also significant (3.098, CIs: 2.995–3.201; Table 
1), translating to smaller space use in the group 1 (19.516 
km, CIs: 18.435–20.640 km; Table 1) compared to group 2 
(432.35 km, CIs: 368.43–506.87 km; Table 1).

The density model had a two-dimensional smooth term 
with k = 10 allowing density to vary over time and latitude. 

We found significant support for non-linear variation over 
space and time as nine out of 10 smooth coefficients had val-
ues different from zero (Table 1). The smooth terms suggest 
cycling of density over time where there are clear peaks and 
troughs (Fig. 2). In lieu of an appropriate goodness-of-fit test, 
we calculated Fletcher’s c-hat values for each session, which 
ranged from 6.77 to 81.17 (Supporting information). Based 
on these values, we applied a variance inflation adjustment 
to the 95% confidence intervals around the density esti-
mates to demonstrate the maximum possible uncertainty if 
the data are overdispersed relative to the Poisson distribution 
(Supporting information). We note again that this is a worst 
case scenario which ignores the complexity of our observa-
tion model, which was specifically adjusted to account for 
heterogeneity (Pledger 2000).

Conditional effects plots also help to visualise the model 
results. Firstly, three points of latitude were selected at equal 
intervals to represent density over time (Fig. 3). The points of 
latitude were selected to span the study area at equal intervals. 
At all three latitudes we see the cyclical fluctuations in den-
sity, but with more prominence at lower latitudes and cyclical 
amplitudes that dampen from south to north. This could sug-
gest a change over time and space of the distribution of the 
population as the density of animals at higher latitudes looks 
to be increasing in the peak years. We also selected speci-
fied time points to assess how density changed with latitude 
(Fig. 4). We selected the years with the lowest densities to 
remove the effect of the fluctuation. Overall, we see that den-
sities are highest at lower latitudes and then decrease as lati-
tude increases. We also find that density has decreased with 
each cycle, as 1998 has the highest, followed by 2013 and 
then 2023, signaling a possible decrease in density over time.

Table 1. Summary of spatial capture–recapture (SCR) model coefficients and associated variance. SE is the standard error, lower CI is the 
lower 95% confidence interval, and upper CI is upper 95% confidence interval. Parameters are density (D), baseline encounter rate (λ), and 
the encounter change rate (σ) a spatial parameter that determines the space over which encounter rates reduce towards 0. As λ and σ were 
modelled with a 2-class mixture parameter, there are two latent groups for each parameter, group 1 (g1) and group 2 (g2), for which pmix 
describes the logit scale probability that a randomly selected individual is in group 1. D and λ were fit using smooth terms so k values rep-
resent the coefficients and associated errors for each of the knots. 

 Coefficients (β) SE Lower CI Upper CI

Density (D)     
 D intercept −11.606 0.065 −11.732 −11.479
 D smooth term (k = 2) 0.651 0.166 0.324 0.977
 D smooth term (k = 3) −0.715 0.165 −1.038 −0.392
 D smooth term (k = 4) 1.437 0.182 1.080 1.794
 D smooth term (k = 5) −0.614 0.146 −0.901 −0.328
 D smooth term (k = 6) 0.061 0.045 −0.027 0.149
 D smooth term (k = 7) −1.527 0.248 −2.013 −1.041
 D smooth term (k = 8) 3.871 0.759 2.384 5.359
 D smooth term (k = 9) −1.036 0.044 −1.122 −0.949
 D smooth term (k = 10) −0.348 0.086 −0.517 −0.179
Baseline encounter (λ)     
 λ intercept −2.122 0.089 −2.296 −1.947
 λ (g1) (k = 2) −0.421 0.164 −0.743 −0.099
 λ (g1) (k = 3) −0.542 0.046 −0.633 −0.451
 Difference g1 versus g2 −4.181 0.124 −4.423 −3.939
Encounter change rate (σ) 9.879 0.029 9.822 9.935
 Difference g1 versus g2 3.098 0.052 2.995 3.201
pmix −0.286 0.198 −0.674 0.101
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This is a model for density over time and space, and histor-
ically these results have been reported in terms of total popu-
lation size. In SCR this means summing over time and space, 
so the population size represents the number of animals in 
the state space (S). Total abundance showed no overall trend 
across the study period, but also had cyclical fluctuations 
between around 500 and 1200 individuals (Fig. 2). This rate 
of change is not biologically possible for a long-lived species 
like blue whales (Ramp et al. 2006, Vernazzani et al. 2017), so 
suggests that in low abundance years the animals are spend-
ing time outside of the USWC study area.

Comparison of abundance estimates
When the abundance estimates from the SCR model were 
compared to estimates from other datasets and models 
(Fig. 5), the most similar were the Darroch estimates which 
had very similar values to the SCR estimates. The Chao 
estimates were also similar but diverged slightly in the late 
1990s and mid–late 2010s. Design-based estimates and spe-
cies distribution models showed larger differences in values 
and trends, although both sets of estimates had substantial 
uncertainty.

Discussion

Our findings show that there are cyclical fluctuations in the 
numbers of ENP blue whales in the USWC area between 
1991 and 2023 (Fig. 2). As blue whales are a long-lived spe-
cies (Ramp et al. 2006, Vernazzani et al. 2017), these cannot 
feasibly reflect changes in actual population size. Therefore, it 
is most likely that the number of animals visiting the USWC 
follows a cyclical pattern, and that in the trough years, animals 

are elsewhere. The USWC is a summer and autumn feeding 
area for this population, but its range extends both north and 
south of the USWC (Bailey et al. 2009, Calambokidis et al. 
2009a). Generally, as animals arrive at the USWC they are 
migrating north from wintering areas, such as the Gulf of 
California in Mexico and the Costa Rica Dome off Central 
America (Bailey  et  al. 2009, Irvine  et  al. 2014, Ugalde De 
La Cruz 2015). The troughs in our results could correspond 
to periods when animals may be spending minimal time in 
USWC waters, possibly remaining further south, such as in 
the waters off the Baja California peninsula, moving offshore 
or transiting the USWC, rapidly reducing the likelihood of 
being captured. The population size of another large whale 
species, the eastern North Pacific gray whale Eschrichtius 
robustus has shown to be sensitive to changing environmen-
tal conditions, with cyclical reduction between 15 and 25% 

35.0N

40.0N

45.0N

124.0W 121.0W 118.0W
Longitude (°)

La
tit

ud
e 

(°
)

1995 2000 2005 2010 2015 2020

Density (per 10 km2)

0.01

0.02

0.03

0.04

0.05

0

250

500

750

1000

1250

1995 2000 2005 2010 2015 2020
Year

A
bu

nd
an

ce

Figure 2. Summary of estimated density and abundance from spatial capture–recapture (SCR). Top right panel shows density surface in 
relation to the latitude of the coastline (top left). Bottom right panel shows estimates of abundance for the total population across the whole 
study area. Error bars represent 95% confidence intervals.
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 16000587, 0, D
ow

nloaded from
 https://nsojournals.onlinelibrary.w

iley.com
/doi/10.1002/ecog.07878 by A

nnette H
arnish , W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 8 of 14

(Stewart et al. 2023). Environmental change could also be a 
contributing factor to fluctuations in blue whale abundance 
in USWC waters, which should be explored further in future 
research.

The variable spatial distribution is most likely related to 
prey concentration. Globally, blue whale movements are 
closely related to high productivity areas throughout the year 
(Reilly and Thayer 1990, Branch  et  al. 2007). They target 
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Figure 4. Conditional effects plots of density by latitude in three lowest density years. Shaded areas represent 95% confidence intervals.
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Figure 5. Comparison of spatial capture–recapture (SCR) abundance estimates (black points on all plots) to estimates generated by other 
methods based on photo-identification and line transect data. Error bars represent 2 standard errors for Chao and Darroch estimates and 
95% confidence intervals for all others. The y-axis has been truncated to better show variability in the estimates; the design-based estimates 
were 2569, 2641, and 2936 in 1991, 1993, and 1996, respectively, with the upper 95% CIs of 6167, 9508, and 7048, respectively (Barlow 
2016, see the Supporting information for plot with extended y-axis). The upper 95% CI for the species distribution model in 1996 is 4009 
(Becker et al. 2020). For Chao and Darroch capture–recapture estimates data were limited to the CRC survey data from the continental 
USWC only. Chao and Darroch estimates are 4-year rolling estimates (Calambokidis and Barlow 2020).
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specific species of krill, feeding on high-density aggregations 
(Croll  et  al. 2005, Goldbogen  et  al. 2011). Krill are sensi-
tive to ocean temperatures, favoring cooler ocean conditions 
(Cimino et al. 2020, Phillips et al. 2022). The distribution 
of Thysanoessa spinifera, the preferred species of krill for ENP 
blue whales (Fiedler et al. 1998, Croll et al. 2005, Nickels et al. 
2018), has been shown to shift north in warmer years (Lilly 
and Ohman 2021). If there were ample krill resources as the 
whales migrated north in spring (e.g. off the west coast of 
Baja California), there may not be a motivation to continue 
north and reach the USWC. Conversely, if krill resources 
shifted north due to warmer waters further south, this could 
explain the higher densities of whales in the USWC area in 
other years. This is also supported by the general trend of 
density declining with increasing latitude (Fig. 4). If whales 
were finding ample food, there would be no motivation to 
continue moving north and expend resources travelling. Over 
the study period, there was dampened amplitude cycling as 
you move northward (Fig. 3). However, in peak years, there 
is some evidence that the density at lower latitudes declines 
slightly over time while the peak density at higher latitudes 
appears to be increasing, suggesting more animals are mov-
ing further north. This type of shift in distribution could be 
driven by climate change warming the oceans, as generally 
waters are cooler at higher latitudes and krill is known to shift 
north in warmer years (Lilly and Ohman 2021).

Overall abundance of the ENP blue whale population 
showed no overall trend between 1991 and 2023, though 
overall density fluctuated (Fig. 2). Abundance estimates from 
the SCR model show good concurrence with the Chao and 
Darroch 4-year rolling closed capture–recapture estimates 
generated from an equivalent dataset, especially with the 
Darroch estimates. The Chao estimates diverge at two points, 
both of which are peak periods in the SCR model. The SCR 
model found that there is increased density which spreads 
further north in these periods. The Chao model accounts for 
individual heterogeneity in capture probabilities, so, if some 
individuals were shifting their distribution and subsequently 
less likely to be recaptured, it would explain why estimates 
are higher. These results highlight the value of SCR when 
compared to traditional capture–recapture models. While 
similar information about the overall population trend is 
provided by traditional capture–recapture and SCR mod-
els, SCR informs on the distribution of the population and 
can explain variation in abundance. SCR estimates were also 
compared to the two sets of estimates based on the USWC 
line transect data. In the 1990s the estimates from transect 
data are much higher but from the 2000s onwards showed 
better concurrence, especially with the estimates from species 
distribution models. The fluctuations in abundance detected 
by the SCR model are somewhat reflected in the design-based 
and species distribution model estimates, but the latter lack 
the resolution to make conclusive inferences about trends. 
This reinforces the need for approaches that can detect both 
spatial and temporal variation in populations, as exemplified 
by this case where the irregular line transect sampling years 
happened to miss the years in peak abundance estimated by 

the SCR model. Wide-scale line transect surveys are com-
monly used to monitor cetacean populations and, while they 
have benefits, our results reinforce caution when interpreting 
results from these surveys, especially where they have irregu-
lar temporal and broad spatial resolution.

From all these results, we infer that, by assessing density in 
both space and time, the abundance estimates generated by 
the SCR models do more robustly represent blue whale num-
bers off the USWC, and also explain the divergence seen in 
trends from other estimates. The cyclical fluctuations found 
by the SCR model suggest that a varying portion of the pop-
ulation is using the USWC and that this continues to shift 
over time. Notably, a line transect survey off the west coast 
of Baja California in 2018 estimated much higher abundance 
of blue whales than the equivalent estimates for the USWC, 
supporting the possibility that, in some years, some individu-
als never reach the USWC (Becker et al. 2020, 2022).

As this is a relatively novel modelling approach for these 
types of data, ensuring we accurately represented all facets of 
the data was an important consideration. One such major 
consideration was accounting for individual heterogene-
ity, which is common in baleen whale photo-identification 
datasets (Hammond and Sears 1990, Ramp  et  al. 2006, 
Hammond et  al. 2021). ENP blue whales show site fidel-
ity (Busquets-Vass  et  al. 2017, 2021) so accounting for 
individual variation in space use is important. While spa-
tial capture–recapture inherently accounts for this individ-
ual variation in space use, the sampling in this study was 
coastally focused which could have introduced bias. If some 
individuals were differentially using inshore and offshore 
waters, the inshore animals would be more likely to be recap-
tured (Calambokidis and Barlow 2020). The introduction 
of the 2-class mixture parameter allowed capture probability 
and likelihood of detection to be modelled as two separate 
classes, accounting for any possible bias created in abundance 
estimates by heterogeneity in capture probabilities (Pledger 
2000). While there could be residual individual heterogene-
ity in detection rate, e.g. involving additional classes, there 
is no biological evidence for selecting more classes and other 
diagnostics would not be a reliable way to select a differ-
ent mixture (Dorazio and Andrew Royle 2003, Pledger and 
Phillpot 2008). Additionally, 2-class mixtures have been 
shown to be sufficient to substantially correct for any bias 
in abundance estimates caused by heterogeneity (Pledger 
2000, Cubaynes et al. 2012). The mixture parameter, which 
is the proportion of the population expected to be in the first 
group, suggested the two groups of whales represented 43 
and 57% of the population. There was a notable difference 
in baseline detection rate supporting the inclusion of the 
mixture parameter. The difference in the σ parameter (rate at 
which likelihood of detection declines as animals move away 
from the activity center) also showed a sizeable difference 
between the groups (19.516 km versus 432.35 km), suggest-
ing two very different movement behaviors in the popula-
tion with group two moving far greater distances within the 
season than group one. This is likely the result of compensa-
tory heterogeneity, which reinforces the application of the 
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2-class mixture parameter on both the σ and λ0 parameters 
(Efford and Mowat 2014). While using a 2-class mixture 
parameter is a good way to account for heterogeneity in 
detection, it does not explicitly account for heterogeneity in 
any spatial structure, which could be present in the popula-
tion. However, SCR methods have been found to be robust 
even to complete transience (Royle et al. 2016). In addition, 
a simulation study found capture–recapture data increased 
accuracy and precision when estimating population trends 
and an improved ability to distinguish whether trends were 
driven by actual changes in population abundance or distri-
bution shifts, which supports the use of these data to answer 
such biological questions (Boyd and Punt 2021).

Other aspects of the population’s life history also create 
potential sources of bias not explicitly accounted for in this 
modelling approach. SCR models assume animals have a 
static activity center (Efford 2004, Royle et al. 2014). ENP 
blue whales are a migratory population, with animals mov-
ing between lower latitudes in winter and higher latitudes 
in summer, although there are examples of animals diverg-
ing from these patterns (Mate et al. 1999, Bailey et al. 2009, 
Busquets-Vass  et  al. 2021). There can also be variation in 
location and timing of migration; movements may be based 
on food availability as opposed to being driven by other life 
history events (e.g. calving or mating) (Szesciorka et al. 2020, 
Oestreich et al. 2022). Blue whales off the USWC predomi-
nantly demonstrate feeding behavior (Palacios  et  al. 2019, 
Fahlbusch et al. 2022) so are less likely to be making large 
movements relative to other times in the year. However, ani-
mals are more likely to be moving north in spring and early 
summer, and south in late summer and autumn.

The SCR model developed here provides an initial 
approach to integrating spatial data into a capture–recapture 
framework for a wide-ranging marine species. However, other 
steps can be taken to improve inferences from the model, 
offering an opportunity to continue developing this work 
further. While the small boat surveys provide a good repre-
sentation of the USWC coastal waters, they do have limi-
tations. These surveys miss offshore waters, and therefore a 
considerable part of the range, and this may limit the number 
of recaptures and lead to abundance estimates that are biased 
low relative to the whole population. Future studies could 
explore the addition of other datasets which could increase 
the number of recaptures across their range including waters 
further offshore (e.g. opportunistic photo-identification 
data). They could also include biotelemetry data to provide 
information on the movement patterns of individuals.

Another interesting development would be to explore 
how well environmental covariates explain the spatio-
temporal variation, helping us to understand not only the 
movements, but what drives them (Santora  et  al. 2017, 
Fahlbusch et al. 2024). The clear cyclical nature of the den-
sity fluctuations points to a cyclical environmental event 
such as the Pacific Decadal Oscillation (Fiedler 2002), which 
has previously been linked to body condition in ENP blue 
whales (Wachtendonk  et  al. 2022). If we can understand 
how blue whale abundance off the USWC fluctuates with 

environmental change, it improves our ability to predict their 
distribution and, where necessary, manage human activities 
that threaten the population. This is particularly relevant in 
the face of a changing climate which will likely continue to 
impact the distribution of the populations, making the need 
for robust spatiotemporal estimates and appropriate methods 
to generate them increasingly important. Furthermore, for 
species that are subject to anthropogenic pressures, know-
ing where animals are is crucial to implementing mitiga-
tion measures in the most effective way. For example, baleen 
whales are subject to entanglement in fishing gear and ship 
strikes (Rockwood et al. 2018, Saez et al. 2021). Mitigation 
to reduce impacts, such as fisheries closures and speed lim-
its for ships, rely heavily on up-to-date information on dis-
tribution and abundance (Wiley et al. 2011, Abrahms et al. 
2019, Hausner et al. 2021). We believe SCR is an interesting 
and valuable approach to modelling data for wide-ranging 
marine species to answer these questions. However, while 
SCR models are robust to a wide range of assumption viola-
tions (Choo et al. 2024), there is a need for further work on 
appropriate goodness-of fit-testing to validate these methods 
in this setting.

To provide robust information for conservation and to 
effectively manage human activities that may impact a popu-
lation, knowledge of spatiotemporal variation is critical. SCR 
is a useful tool for modelling spatiotemporal abundance of 
wide-ranging marine populations, which offers particular 
value as populations undergo redistributions in the face of 
climate change.
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