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Abstract
Aim: Fisheries bycatch is a major threat to populations of protected species such as 
marine mammals, seabirds and sea turtles, and static management approaches are 
often unsuccessful in mitigating bycatch of these highly mobile species. Combining 
species distribution models (SDMs) with oceanographic data has been proposed as a 
means of predicting when and where bycatch is likely to occur. However, studies as-
sessing whether SDMs can accurately predict fisheries bycatch using independent 
data are lacking. Assessing model performance using independent data is necessary 
to test whether a model is generalizable, and this is particularly important for models 
with management applications. Here, we use short‐finned pilot whale (Globicephala 
macrorhynchus) bycatch in a pelagic longline fishery as a case study to inform efforts 
to mitigate fisheries bycatch.
Location: Offshore waters, north‐east United States.
Methods: We integrated telemetry and oceanographic data using mixed‐effects gen-
eralized additive models to predict pilot whale occurrence and assessed model per-
formance using k‐folds cross‐validation. We then evaluated the model's ability to 
predict pilot whale bycatch using data from independent on‐board observers.
Results: The model performed well, and predictions were strongly and significantly 
correlated with observed rates of bycatch in space and time. Temperature and prox-
imity to mesoscale oceanographic features (thermal fronts and sea level anomalies) 
were important predictors of pilot whale occurrence, and as a result, spatial predic-
tions of the risk of bycatch varied through time.
Main conclusions: Our findings demonstrate that SDMs can be used to accurately 
predict times and places with a high risk of bycatch, and illustrate that models using 
dynamic oceanographic variables can identify smaller, more specific focal manage-
ment regions than static management approaches. Combining SDMs with near real‐
time or forecasted environmental conditions could provide a promising tool for 
decreasing bycatch and will be valuable in developing adaptive management strate-
gies to mitigate fisheries bycatch of protected species.
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1  | INTRODUC TION

Marine systems are highly dynamic, and the distribution of marine or-
ganisms responds to variation in physical parameters across a range 
of spatial and temporal scales (Genin et al., 1994; Hunt & Schneider, 
1987; McManus & Woodson, 2012; Perry, Low, Ellis, & Reynolds, 
2005; Sims & Quayle, 1998). Spatial and temporal variation in the 
distribution of marine species leads to management challenges and 
erodes the efficacy of static approaches, particularly those based 
on spatial management (Hazen et al., 2018; Maxwell et al., 2015; 
O'Keefe, Cadrin, & Stokesbury, 2013). Adaptive approaches may pro-
vide more effective management of marine species, particularly for 
highly mobile species that forage over large spatial scales and exploit 
dynamic and ephemeral foraging areas (Cotté, Park, Guinet, & Bost, 
2007; Dunn, Maxwell, Boustany, & Halpin, 2016; Hazen et al., 2016; 
Irons, 1998; Johnston, Thorne, & Read, 2005; Lewison et al., 2014; 
Maxwell et al., 2015; Moore & Lien, 2007; Weimerskirch, 2007). 
Species distribution models (SDMs) can provide valuable sources of 
information to inform such adaptive management approaches and 
can be used to predict times and places where focal species are most 
likely to occur (Hazen et al., 2016, 2018; Žydelis et al., 2011).

Accurately predicting species occurrence could provide a means 
of predicting and ultimately minimizing fisheries bycatch (Hobday 
& Hartmann, 2006; Howell, Kobayashi, Parker, Balazs, & Polovina, 
2008), the incidental mortality of non‐target species in fisheries 
(Lewison et al., 2014). Fisheries bycatch is an important source of mor-
tality for many marine species and is a major threat to populations of 
many long‐lived species of marine mammals, seabirds and sea turtles 
(Lewison, Crowder, Read, & Freeman, 2004; Moore et al., 2009; Read, 
Drinker, & Northridge, 2006; Reeves, McClellan, & Werner, 2013). 
Some bycaught species are released alive but are injured after becom-
ing entangled in fishing gear, which can result in subsequent mortality 
(Read, 2008). Many of these species exhibit very low rates of popu-
lation growth due to life history constraints (Barlow, 1995; Reilly & 
Barlow, 1986), making them particularly vulnerable to the effects of 
bycatch, especially if this results in a reduction in adult survival rates 
(Lewison et al., 2004). In some species, bycatch results from the inten-
tional removal of bait or catch from fishing gear by a predator which 
subsequently becomes hooked and/or entangled; in such cases, these 
interactions also impose a direct time and economic cost to fishers. 
These interactions, referred to as depredation, are an increasingly fre-
quent problem in several fisheries (Read, 2008; Read et al., 2006).

To date, most bycatch mitigation measures have focused on gear 
modifications, fixed marine protected areas or static time–area clo-
sures to the fishery (Carretta & Barlow, 2011; Dalton & Ralston, 2004; 
Lewison et al., 2014; Werner, Kraus, Read, & Zollett, 2006). Static 
time–area closures are unpopular with fishers (Bisack & Sutinen, 

2006; Murray, Read, & SoLow, 2000; Read, 2013) and may be inef-
fective because the spatial distribution of bycaught species is dy-
namic (Hartel, Constantine, & Torres, 2015; Žydelis et al., 2011). The 
use of dynamic spatial approaches has been suggested as a means of 
improving the efficacy of management and decreasing fisheries by-
catch (Dunn, Boustany, & Halpin, 2011; Dunn et al., 2016; Hazen et 
al., 2018). Such dynamic management approaches could reduce the 
extent of the managed area, providing conservation benefits while 
minimizing economic costs to fishery participants (Dunn et al., 2011; 
Hazen et al., 2016, 2018; Maxwell et al., 2015).

High‐resolution satellite imagery and bathymetric grids provide 
continuous measurements of oceanographic variables across large 
spatial scales and, therefore, provide critical tools to help predict 
the distribution of highly mobile species. Improvements in the res-
olution of available cloud‐free satellite imagery (e.g., the Group for 
High Resolution SST) have advanced our ability to resolve dynamic 
oceanographic variables. Similarly, bathymetric models have been 
improved greatly in recent years by incorporating additional depth 
soundings and data from a variety of sources (Beaman, O'Brien, Post, 
& Santis, 2011; Weatherall et al., 2015). These models have provided 
better characterizations of the ocean floor and have enabled the de-
velopment of derived metrics such as slope maps to examine specific 
geological features and morphostructures associated with the ocean 
floor (Esteban, Tassone, Menichetti, & Lodolo, 2017). At the same 
time, improvements in the use of satellite‐linked telemetry have facil-
itated the study of marine predator movements (Hart & Hyrenbach, 
2009; Ropert‐Coudert & Wilson, 2005). Taken together, these ad-
vances provide the foundation for quantitative studies predicting the 
occurrence of fisheries bycatch using bathymetric and near real‐time 
oceanographic data (Roe et al., 2014; Žydelis et al., 2011).

Depredation poses an additional challenge for management ef-
forts aimed at minimizing bycatch; fishing vessels and fishing gear can 
serve as an attractant to depredating species, and depredating animals 
may follow or seek out fishing vessels in order to increase the likeli-
hood of encountering an easily accessible meal in the form of bait or 
catch (Gilman, Brothers, McPherson, & Dalzell, 2007; Kock, Purves, & 
Duhamel, 2006; Schakner, Lunsford, Straley, Eguchi, & Mesnick, 2014; 
Thode, Straley, Tiemann, Folkert, & O'Connell, 2007). Thus, bycatch 
might occur in regions outside of the predicted habitat range for dep-
redating species. This is particularly true for species such as cetaceans 
since social learning plays a major role in foraging behaviour (Baird, 
Abrams, & Dill, 1992; Baird & Whitehead, 2000; Rendell & Whitehead, 
2001; Schakner et al., 2014). It is therefore important to assess 
whether SDMs can be used to accurately predict the risk of bycatch 
before developing dynamic spatial approaches as a mitigation tool.

Here, we use short‐finned pilot whale (Globicephala macrorhyn-
chus) bycatch in a pelagic longline fishery as a case study to inform 
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efforts to model and mitigate fisheries bycatch. Short‐finned pilot 
whales in the Northwest Atlantic depredate bait and catch in the U.S. 
pelagic longline fishery (Waring, Josephson, Maze‐Foley, & Rosel, 
2015). Some whales become entangled or hooked as a result of these 
interactions, resulting in mortality and serious injury (M/SI). The by-
catch of marine mammals in the United States is regulated under the 
1994 amendments to the Marine Mammal Protection Act (MMPA). 
Levels of bycatch exceeding a biological reference point (potential 
biological removal or PBR) are considered to be unsustainable and 
must be reduced to below this threshold through negotiated agree-
ments of stakeholders on a Take Reduction Team, later translated into 
rulemaking by the management agency (McDonald, Lewison, & Read, 
2016). The five‐year average of M/SI for Northwest Atlantic short‐
finned pilot whales in the pelagic longline fishery recently exceeded 
PBR, and thus, the stock is now considered to be strategic under the 
MMPA (US OFR, 2016). Previous attempts to decrease pilot whale 
bycatch have proven to be unsuccessful. Fishing restrictions evalu-
ated to date have included increased observer coverage for vessels 
fishing within the Cape Hatteras Special Research Area (CHSRA) and 
a reduction in mainline length to less than 20 nm for longline vessels 
fishing in the Mid‐Atlantic Bight (US OFR, 2009). Preliminary tests 
of acoustic deterrents to dissuade pilot whales from approaching 
longlines have also proven unsuccessful in reducing depredation of 
catch and bait (A. Read, unpublished data). The shelf break region 
provides important pilot whale habitat (Thorne et al., 2017), and an 
examination of pilot whale‐longline overlap in the Northwest Atlantic 
suggested that shifting longline effort into offshore waters would de-
crease bycatch by more than 50% (Stepanuk, Read, Baird, Webster, 
& Thorne, 2018). However, such a change would strongly impact 
fishers, requiring that a large proportion of longliners would have to 
alter their fishing practices. Temporal patterns in rates of pilot whale 
bycatch suggest that dynamic habitat variables may be important to 
understanding and predicting pilot whale occurrence (Stepanuk et al., 
2018). Incorporating dynamic oceanographic variables into predictive 
habitat models to predict high‐risk areas of bycatch could provide a 
means of decreasing pilot whale bycatch in the longline fishery, while 
reducing the extent of the area that longliners would need to avoid.

Until recently, knowledge of short‐finned pilot whale habitat use 
was limited due to a lack of species‐level data (Waring, Josephson, 
Maze‐Foley, & Rosel, 2013). Short‐finned pilot whales are difficult 
to differentiate from their congener, the long‐finned pilot whale 
(Globicephala melas), at sea except under ideal conditions (Rone & 
Pace, 2012). The two species differ in their distribution and ecol-
ogy, and only short‐finned pilot whales are threatened by bycatch 
in the pelagic longline fishery (Gannon, Read, Craddock, Fristrup, & 
Nicolas, 1997; Mintzer, Gannon, Barros, & Read, 2008; Waring et 
al., 2013, 2015). Our analysis uses data from recent satellite telem-
etry studies, in which the species identity of whales at the tagging 
location was confirmed by genetic analysis of biopsy samples, to in-
vestigate the habitat use of short‐finned pilot whales. These data 
allow us to examine species–environment relationships in detail and 
to develop predictive models for short‐finned pilot whales (Figure 1).

The objectives of our study were to use pilot whale bycatch in 
the Atlantic pelagic longline fishery as a case study to:

1.	 Develop probabilistic predictions of occurrence for bycaught 
species using telemetry data and spatial grids of environmental 
data;

2.	 Assess whether these predictions can be used to accurately pre-
dict fisheries bycatch using data recorded by government fisher-
ies observers; and

3.	 Compare the extent of managed areas predicted using static and 
dynamic management approaches for mitigating bycatch.

2  | METHODS

2.1 | Study area

This research focused on the Mid‐Atlantic Bight (MAB) and 
Northeast Coast (NEC) regions managed by the National Marine 
Fisheries Service (NMFS; Figure 2d; boundaries of the MAB and 
NEC regions defined here as 33.5°N and 43°N, respectively, ex-
tending from the coast out to 60°W), because satellite‐tagged pilot 

F I G U R E  1  Schematic showing 
research methods used to develop spatial 
predictions of bycatch risk of short‐finned 
pilot whales in the Northwest Atlantic. 
Models were assessed with k‐folds cross‐
validation, and data from an independent 
on‐board observer program were used 
to evaluate the predictive capacity for 
identifying locations and times with a high 
risk of bycatch. GAMMs: Mixed‐effects 
generalized additive models; POP: Pelagic 
Observer Program
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whales (described below) stayed within these regions, and because 
the vast majority of observed pilot whale‐longline bycatch occurs 
within these regions (Garrison, 2007). In this region, the continen-
tal shelf drops off steeply, with depths typically increasing from less 
than 200 m to more than 1,000 m over a cross‐shelf distance of less 
than 10 km. The steep bathymetry in this region is in contrast to the 
more gradually sloping continental shelf in the South Atlantic Bight 
(SAB), where depths typically increase from 200 to 1,000 m over a 
distance of more than 100 km (Figure 2). Temperature regimes are 
dominated by the effects of the warm waters of the Gulf Stream in 
the south and the cool Labrador slope water to the north. The posi-
tion of these two water masses have dramatic effects on tempera-
ture regimes, and water temperatures can vary dramatically in space 
and time, both within and between years. For example, summer sea 
surface temperatures (SST; June through August) can vary from as 
high as 30°C off of Cape Hatteras (35°N) and in the Gulf Stream to as 
low as 8°C in the Northeast Channel south of Nova Scotia, Canada 
(42°N). Water temperatures within this region can show dramatic 
within‐year variability; for example, in 2015, water temperatures 
in the Northeast Channel varied from approximately 1°C in April to 
21°C in August.

2.2 | Pelagic longline fishery

The US Atlantic pelagic longline fishery primarily targets sword-
fish (Xiphias gladius), yellowfin tuna (Thunnus albacares) and bigeye 
tuna (Thunnus obesus), with secondary targets of albacore tuna 
(Thunnus alalunga) and pelagic sharks. While longline gear can be 

altered to target different species, such as by varying the depth of 
the set, the timing of the set, the number of hooks and the spacing 
of hooks, multiple species are typically caught in pelagic longline 
sets. Swordfish feed in near‐surface waters at night, and thus, sets 
targeting swordfish are typically deployed closer to the surface 
and at night, while sets targeting tunas are typically set deeper in 
the water column during the day (NMFS, 2006). Longline vessels 
primarily use Atlantic mackerel (Scomber scombrus) or squid (Illex 
sp.) for bait, which is typically stored frozen and then thawed prior 
to use (Beerkircher, Lee, Brown, & Abercrombie, 2002; Keene, 
Beerkircher, & Lee, 2007). Pilot whales depredate both bait and 
catch from longlines, and bycatch in the pelagic longline fishery 
is the primary source of human‐caused M/SI for the Northwest 
Atlantic stock of short‐finned pilot whales (Hayes et al., 2017). 
Stepanuk et al. (2018) found that seasonal variability in longline 
effort relative to the 1,000‐m isobath influenced seasonal pat-
terns in pilot whale‐longline overlap, which was strongly and sig-
nificantly correlated with rates of pilot whale bycatch. However, 
the role of dynamic oceanography in driving patterns of bycatch 
requires further attention.

2.3 | Telemetry data

We developed predictive habitat models for short‐finned pilot 
whales using data from 35 satellite tags deployed in waters off 
Cape Hatteras, North Carolina, in 2014 and 2015. Satellite tags 
provided location data for tracked pilot whales and did not provide 
environmental data. Tagging efforts were conducted independent 

F I G U R E  2  Environmental parameters 
in the study area used to develop the 
short‐finned pilot whale habitat model. 
The Mid‐Atlantic Bight and Northeast 
Coast (MAB and NEC) and the South 
Atlantic Bight (SAB) regions are shown 
in panel d. The green star indicates the 
location of tag deployments off of Cape 
Hatteras, North Carolina. Data are shown 
for 3 September 2014. SST, Sea surface 
temperature; SLA, Sea level anomaly
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of fishing and observer effort. We used 27 SPOT5 and 8 Mk10 
Wildlife Computer satellite tags, all in the Low Impact Minimally 
Percutaneous External‐electronics Transmitter (LIMPET) configura-
tion, attached with two titanium darts with backward facing pet-
als. Tags were remotely deployed into the dorsal fin or base of the 
dorsal fin of short‐finned pilot whales using a pneumatic projector 
(Andrews, Pitman, & Ballance, 2008; Baird et al., 2010). To provide 
data on habitat use over broad spatial and temporal scales, SPOT5 
tags were programmed to collect data daily for the first 60 days of 
the deployment, every third day for the subsequent 21 days and 
every ninth day for the remainder of the deployment. Mk10 tags 
were programmed to transmit data daily for the first 20 days of the 
deployment, every third day for the subsequent 30 days and every 
ninth day for the remainder of the deployment. We used all data 
from tag transmissions through April 2016; resulting tag deploy-
ments ranged from 6 to 198 days (mean 68 days), and tagged whales 
travelled 43–1,312 km (mean 357 km) from their tagging location 
during these periods. Tag data were processed with the Douglas 
Argos‐Filter to remove erroneous location estimates (Douglas et 
al., 2012; user‐defined settings: min. rate = 15, max‐redun = 3, rate-
coef = 25, KeepLC = 2) and resampled to a 12‐hr time frame to en-
sure consistent time steps between all observations. Resampling 
was conducted using the minimum covariance determinant (MCD) 
in the MASS library (version 7.3‐45) of the r statistical package (ver-
sion 3.3.2) to provide a robust estimate of location at each time step 
that is not strongly influenced by outliers occurring due to the spatial 
resolution of telemetry data. When fewer than four locations were 
available within a time window, MCD cannot be computed and the 
coordinate‐wise median was used (Thorne et al., 2015).

2.4 | Environmental data

Our initial data exploration highlighted the importance of depth, 
slope and proximity to the shelf break as important factors influ-
encing the movements of short‐finned pilot whales, and previous 
studies suggested that water temperature, thermal fronts and Gulf 
Stream features are also important variables driving the habitat use 
of this species (Fullard et al., 2000; Thorne et al., 2017; Waring et 
al., 2015). We assessed bathymetric variables using GEBCO bathym-
etric grids (resolution 1 km; http://www.gebco.net/data_and_prod-
ucts/gridded_bathymetry_data/) and used the 200‐m isobath as a 
proxy for the location of the continental shelf break. Previous stud-
ies suggested the importance of steep bathymetric gradients within 
the diving range of pilot whales (depths of less than 1,200 m; Quick 
et al., 2017), but bathymetric gradients beyond this depth range did 
not appear to influence pilot whale distribution (Thorne et al., 2017). 
We therefore assumed that slopes occurring at depths of more than 
1,200 m would not influence pilot whale habitat use. We assessed 
the effect of bathymetric slope within the pilot whale diving range 
using the neighbourhood statistics tool (focal statistics) in ArcGIS 
to assess change in depth over a 5 × 5 cell grid; slopes occurring 
at depths of greater than 1,200 m were assigned a value of zero 
(Figure 2c). We used daily Level 4 Group for High Resolution Sea 

Surface Temperature (GHRSST) grids with a spatial resolution of 0.01 
degrees (https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-
L4UHfnd-GLOB-G1SST), available from June 2010 to the present, 
to examine water temperature and thermal fronts. We identified SST 
fronts using the Cayula–Cornillon edge detection tool in the Marine 
Geospatial Ecology Tools (MGET) for ArcGIS (front detection thresh-
old of 0.5°C; Cayula & Cornillon, 1992, Roberts, Best, Dunn, Treml, & 
Halpin, 2010). We used daily grids of AVISO mean sea level anoma-
lies (SLA) in metres, calculated as differences in sea level from the 
long‐term mean (http://www.aviso.altimetry.fr/en/data/products/
sea-surface-height-products.html), downloaded via MGET.

2.5 | Fisheries observer data

We obtained data from the Pelagic Observer Program (POP) run 
by the NMFS, which places independent observers aboard pelagic 
longline vessels to record bycatch and detailed set‐level data of each 
longline set (e.g., set and haul locations, bait type, number of hooks 
deployed and mainline length). The POP was initiated in 1992 and 
on average provides coverage of 4.8% of all longline sets each year 
(Keene et al., 2007). The methods used to represent longline effort 
in space (e.g., points, centroids, polygons) can impact results of spa-
tial analyses, and polygons created from locations at the beginning 
of the set, end of the set, beginning of the haulback and end of the 
haulback provide the most accurate means of representing longline 
effort (Dunn, Kot, & Halpin, 2008). We therefore used the polygon 
method, creating a separate polygon for each longline set, and used 
mean values of environmental data from within the polygon to pre-
dict the probability of pilot whale occurrence at each set (pilot whale 
models described below). We then compared the predicted occur-
rence of pilot whales with observed rates of pilot whale bycatch, 
defined as bycatch per unit effort (BPUE), or the number of pilot 
whales caught per longline set.

2.6 | Predictive models of pilot whale occurrence

We used a binary modelling approach by comparing environmen-
tal data at locations of pilot whale presence (from satellite tracks) 
with locations of pseudo‐absences. We generated pseudo‐absences 
for each pilot whale track from ten temporally matched correlated 
random walks (CRWs) using the approach of Hazen et al. (2016; 
Supporting Information Figure S1). Each CRW had the same start 
time, start location and duration as the pilot whale tracks, and for 
each 12‐hr time step of the pilot whale tracks, we randomly selected 
turning angles and step distances from the distributions observed in 
the telemetry data. The selection of appropriate pseudo‐absences 
has important effects on model performance, and we constrained 
our CRWs using a flag value to reflect the fit of CRWs with pilot 
whale tracks based on overall direction and distance travelled 
(Hazen et al., 2016; Willis‐Norton et al., 2015) as follows:

Flag=2∗
(

distancepilotwhale −distanceCRW

distancepilotwhale

)

+

( anglepilotwhale − angleCRW )∕90

http://www.gebco.net/data_and_products/gridded_bathymetry_data/
http://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST
https://podaac.jpl.nasa.gov/dataset/JPL_OUROCEAN-L4UHfnd-GLOB-G1SST
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products.html
http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products.html
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Resulting flag values ranged from 0 to 5, and we discarded CRWs 
with flag values in the upper quartile and those that crossed land in 
order to obtain pseudo‐absences that represented accessible areas 
for pilot whales (Hazen et al., 2016). The total number of presence 
and pseudo‐absence locations used in the model was 2,690 and 
26,900, respectively.

We sampled environmental variables at each track point and 
pseudo‐absence point, respectively. We modelled the probability 
of pilot whale occurrence as a function of environmental variables 
using mixed‐effects generalized additive models (GAMMs), including 
a random effect for individual whales in order to account for correla-
tion between points on an individual pilot whale track (Gillies et al., 
2006; Shillinger et al., 2011; Willis‐Norton et al., 2015). We ran the 
GAMMs using the gamm4 package (version 0.2‐5) in the r statistical 
package (version 3.3.2) using cubic spline smoothers with 4 or fewer 
degrees of freedom to prevent over‐fitting and performed model 
selection by minimizing UBRE (Wood, 2004). We did not include 
strongly correlated environmental variables (Pearson's correlation 
coefficient > 0.4), such as depth and proximity to the shelf break, 
within the same model. The final model included the following vari-
ables: Distance to shelf break, SST, SLA, slope and distance to SST 
fronts.

We assessed the final model using 10‐fold cross‐validation and 
examined model performance using R2 values, the area under the 
curve (AUC) of the receiver operating characteristic (ROC) plot, and 
model sensitivity and specificity. AUC values range between 0 and 
1, with a value of 1 representing a perfect fit, values higher than 0.9 
indicating an excellent fit, values of 0.80–0.90 signifying good model 
fit and values of 0.70–0.80 representing a fair fit (Swets, 1988). For 
our model, sensitivity describes the probability that a pilot whale 
occurrence would be correctly identified as such by the model (the 
true positive rate), while specificity describes the proportion of pilot 
whale absences that are correctly identified by the model as ab-
sences (the true negative rate). During cross‐validation, data were 
randomly partitioned into ten data equal parts; nine were used to 
build and fit the models, while the last was used as the test data set 
to assess model performance. This process was repeated ten times 
so that each of the ten partitions are used once to test the model, 
and results from the 10‐fold were averaged to examine R2 and AUC 
values, model specificity and sensitivity. To examine spatial vari-
ability in predicted pilot whale habitat through time, we generated 
seasonal means as means of daily predictions produced from daily 
environmental conditions.

2.7 | Assessing predictive models using fisheries 
observer data

We predicted the probability of pilot whale occurrence for each 
longline set using environmental data as described above for monthly 
habitat predictions. This analysis focused on the period from June 
2010 to December 2015 for which we had concurrent high‐reso-
lution SST data and POP observations of longline sets (n = 1,474 
observed sets). Pilot whale bycatch occurs infrequently (116 pilot 

whales were caught in observed longline sets, giving a mean bycatch 
rate of 0.079 pilot whales per longline set during the study period), 
and thus, bycatch is best quantified by examining rates of bycatch 
across multiple longline sets. We used this approach to evaluate 
whether the habitat model could be used to predict pilot whale by-
catch in the longline fishery in four ways. First, we quantified BPUE 
within ten classes of predicted pilot whale occurrence probabilities 
generated by the model (probabilities of 0–0.1, 0.1–0.2, 0.2–0.3, 
0.3–0.4, 0.4–0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9 and 0.9–1) and 
examined correlations between predicted probabilities and BPUE. 
Second, we assessed differences in predicted pilot whale occurrence 
probabilities for sets that caught different numbers of pilot whales 
(sets with no pilot whale bycatch vs. sets in which bycatch was ob-
served; and comparisons of sets with 1 vs. 2 pilot whales caught) 
using Wilcoxon rank sum tests. Thirdly, we examined relationships 
between monthly BPUE and predicted probabilities of pilot whale 
occurrence for observed sets during that month. All analyses were 
limited to classes and time periods with at least five observed sets. 
Lastly, we compared spatial predictions of the model during a pe-
riod of high BPUE with those from a period of low BPUE when fish-
ing effort covered a similar spatial extent to assess whether model 
could be used to predict temporal periods of high bycatch, and to 
shed light on why bycatch was so high during these time periods. 
Specifically, we compared model predictions for December 2015, 
when pilot whale BPUE was particularly high (Stepanuk et al., 2018; 
0.32 pilot whales per set), with predictions during the same month 
in previous years, when pilot whale BPUE occurred at more typical 
levels (0.077 pilot whales per set during December 2010–2014).

To examine whether predictive modelling using dynamic habitat 
variables could be used to identify high‐risk areas for pilot whale by-
catch more precisely than static management approaches, we com-
pared the area covered by static approach discussed by Stepanuk et 
al. (2018) (the region 15 km inshore of the 1,000‐m isobath) with the 
area predicted by our pilot whale habitat model seasonally within 
the MAB and NEC regions (Figure 2d). We examined predicted 
probabilities of pilot whale occurrence at the time and location of 
longline sets, and for illustration purposes, we considered high‐risk 
areas for pilot whale bycatch to be those occurring at probabili-
ties above the lower 95% confidence interval (CI) of longline sets 
in which pilot whale bycatch was observed. Occasionally, regions 
within Gulf Stream rings in distant offshore waters were identified 
as likely pilot whale habitat using this approach (Figure 4). As pilot 
whale bycatch occurs in close proximity to the shelf break and no 
bycatch was observed within offshore Gulf Stream waters (Garrison, 
2007; Stepanuk et al., 2018), areas within Gulf Stream rings in distant 
offshore waters were not considered to be high‐risk areas for pilot 
whale bycatch.

3  | RESULTS

GAMM results and k‐folds cross‐validation showed that the model 
performed well, with a mean proportion of deviance explained of 
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42.57 for the 10‐folds (Table 1). Comparisons between training and 
test data sets indicated a high level of agreement with model pre-
dictions, with a mean AUC of the receiver operator curve of 0.92, 
reflecting an excellent fit (Hosmer & Lemeshow, 2000). Model sen-
sitivity (mean of 0.95) was higher than model specificity (mean of 
0.63), indicating that the model performed well in predicting where 
pilot whales occurred, but occasionally predicted presences where 
none were observed. Given that our model was built using a lim-
ited number of tagged whales, and that there are thousands of more 
whales than those tracked in this study, it follows that the model 
would predict presences where there were no observations from te-
lemetry data. Our model demonstrated that pilot whales occurred in 
regions in close proximity to thermal fronts and were associated with 
warm SST, intermediate bathymetric slopes and both extreme nega-
tive and extreme positive values of SLA, representing dynamic re-
gions such as Gulf Stream meanders and rings (Figure 3). Pilot whales 
primarily occurred in close proximity to the shelf break, but a small 
number of tagged pilot whales also followed Gulf Stream waters into 
offshore waters for part or all of their track (Thorne et al., 2017). 
While in Gulf Stream waters, pilot whale tracks often paralleled the 
shelf break at distances of 250–350 km (Supporting Information 
Figure S2), leading to an increase in pilot whale occurrences relative 
to pseudo‐absence locations at this distance.

Seasonal spatial predictions highlighted shifts in pilot whale 
habitat throughout the year. Most pilot whales occurred in regions 
of medium to high bathymetric relief at close proximity to the shelf 
break, but their probabilities of occurrence shifted with dynamic 
oceanographic variables (SST, SLA, thermal fronts). High probabil-
ities of pilot whale occurrence were restricted to southern regions 
of the MAB during winter but moved north during late summer 
and early fall (Figure 4). The northernmost observation of a satel-
lite‐tagged short‐finned pilot whale occurred in August along the 
shelf break in proximity to the northern flank of George's Bank 
(Thorne et al., 2017). This observation matched well with our spa-
tial prediction of pilot whale habitat in the late summer/ early fall, 
in which the northernmost location of high predicted probabilities 
of pilot whale occurrence was in close proximity to Georges Bank 
(Figure 4). At daily and weekly time‐scales, Gulf Stream rings and 

the intrusion of Gulf Stream waters into shelf break regions in-
creased the probability of pilot whale occurrence in these waters 
(Supporting Information Figure S3).

Predicted probabilities of pilot whale occurrence were strongly 
and significantly correlated with BPUE for observed longline sets 
(Pearson's correlation coefficient = 0.84, p‐value = 9.2 × 10−3). This 
was also true on a monthly time‐scale; months with higher observed 
values of BPUE had higher predicted probabilities of pilot whale oc-
currence (Pearson's correlation coefficient = 0.36, p = 1.2 × 10−2). 
Observed longline sets with observed pilot whale bycatch had 

TA B L E  1  Summary of mixed‐effects generalized additive model of pilot whale occurrence

Estimate Std. error z Value Pr(>|z|) p‐Value R2
Prop. Dev. 
explained AIC AUC Sensitivity Specificity

(Intercept) −3.89 0.15 −26.44 <2E−16 0.38 42.57 9,383 0.92 0.95 0.63

Smooth terms edf Ref.df Chi.sq p‐Value

Distance to 
shelf break

2.99 3 684.82 <2E−16

SST 2.73 3 66.08 1.11E−05

Distance to 
SST front

2.94 3 1,813.37 <2E−16

Slope 2.74 3 94.75 1.58E−04

SLA 2.52 3 175.90 3.58E−03

Note. Values represent mean values for each of the 10‐folds.

F I G U R E  3  Mixed‐effects generalized additive model plots of 
pilot whale presence/absence relative to environmental variables in 
the Northwest Atlantic. Shaded areas represent standard error
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significantly higher predicted probabilities of pilot whale occurrence 
than those in which no pilot whale bycatch was observed (Wilcoxon 
rank sum test, p = 2.7 × 10−9). Similarly, observed sets in which a 
single pilot whale was caught had significantly lower predicted 
probabilities than those in which two pilot whales were caught 
(Wilcoxon rank sum test, p = 3.8 × 10−2; Figure 5). During December 
2015, when BPUE was unusually high, predicted probabilities of 
pilot whale occurrence for observed longline sets were significantly 
higher than those in December 2010–2014, when BPUE occurred at 
more typical rates (Wilcoxon rank sum test, p = 1.5 × 10−7; Figure 6). 
While the locations of individual longline sets could not be shown 
for confidentiality purposes, the spatial distribution of observed 
longline sets was generally similar between years, as reflected by 
core fishing areas represented by the 75% kernel density estimate 
(KDE) of observed longline sets. Higher SST values at the location 
of observed sets during December 2015 (Wilcoxon rank sum test, 
p = 7.9 × 10−10) were associated with higher predicted probabilities 
of pilot whale occurrence at the locations of observed longline sets 
(Figures 6 and 7).

The lower 95% CI of model probabilities for longline sets in which 
pilot whale bycatch was observed was 0.34. The areas in the MAB 
and NEC regions occurring above this threshold varied seasonally and 
were as follows for each of our four seasonal predictions (Figure 4): 
2,673 km2 for February to April (note that an additional 3,156 km2 oc-
curred within Gulf Stream cold‐core rings in distant offshore waters 
and were not included in this estimate; Figure 4); 5,483 km2 for May to 
July; 9,832 km2 for August to October; and 2,582 km2 for November 
to January. By comparison, the area in the MAB and NEC regions 
15 km inshore of the 1,000‐m isobath, which Stepanuk et al. (2018) 
found to have high rates of pilot whale bycatch, was 21,427 km2.

4  | DISCUSSION

SDMs provide a promising tool for predicting when and where 
threats to protected species are likely to occur, information which 
is critical to effective conservation and management (Becker et al., 
2012; Briscoe et al., 2018; Hazen et al., 2016, 2018; Willis‐Norton 

F I G U R E  4  Seasonal spatial predictions of short‐finned pilot whale occurrence in the Northwest Atlantic. Seasonal means were calculated 
as means of daily predictions produced from daily environmental conditions
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et al., 2015). Assessing model performance using independent 
data is necessary to test whether the model is generalizable, and 
SDMs should be evaluated using independent data whenever pos-
sible (Chatfield, 1995; Fielding & Bell, 1997; Guisan & Zimmermann, 
2000; Manel, Dias, & Ormerod, 1999; Olden, Jackson, & Peres‐Neto, 
2002; Pearce & Ferrier, 2000). However, in practice, model valida-
tion is frequently conducted using the same data to construct and 
test the model, which can bias estimates of model performance 
(Araújo, Pearson, Thuiller, & Erhard, 2005; Chatfield, 1995; Pearce 
& Ferrier, 2000; Torres et al., 2015). For models with management 
applications, it is particularly important that model performance be 
assessed rigorously using independent data to ensure that model re-
sults can be applied appropriately to a given management scenario 
before habitat models are integrated into decision‐making. For ex-
ample, marine predators can show differences in habitat preferences 
between regions, and extrapolating SDMs over broad spatial extents 
outside of the calibration area can misinform bycatch mitigation ef-
forts (Torres et al., 2015). Further, efforts to decrease bycatch of 
cetaceans that depredate fishing gear should verify that model re-
sults can be applied to accurately predict where and when bycatch 
is likely to occur. Fishing vessels can actively attract depredating 
predators, and social learning can influence patterns of depredation 
in cetaceans; patterns of depredation might therefore differ from 
typical habitat use (Gilman et al., 2007; Kock et al., 2006; Schakner 
et al., 2014; Thode et al., 2007). Thus, studies using SDMs to indi-
cate the risk of bycatch should also assess how model predictions 
relate to observed patterns of bycatch by using independent data 
from fisheries observers when available to validate the model. In 
the present study, we developed a predictive model of pilot whale 

habitat use and tested its ability to predict pilot whale occurrence 
using both cross‐validation and independent data from government 
fisheries observers. Our predictive habitat model for short‐finned 
pilot whales was not only effective in predicting their occurrence, as 
assessed using cross‐validation, but model predictions were strongly 
and significantly correlated with observations of pilot whale bycatch. 
This indicates that pilot whale bycatch occurred in times and places 
identified as pilot whale habitat, and suggests that in our study area, 
areas in which depredation occurred did not differ from typical pilot 
whale habitat use.

Due to the dynamic nature of marine environments, being able 
to predict species distributions in both space and time is necessary 
to understanding and mitigating threats to marine species (Hazen et 
al., 2013, 2016, 2018; Howell et al., 2008; Willis‐Norton et al., 2015). 

F I G U R E  5  Predicted probabilities of short‐finned pilot whale 
occurrence for longline sets observed by fisheries observers 
relative to the number of pilot whales caught in observed longline 
sets in the Mid‐Atlantic Bight (MAB) and Northeast Coast (NEC). 
*indicates significance at the p < 0.05 level, ***indicates significance 
at the p < 0.001 level

F I G U R E  6  Predicted probability of short‐finned pilot whale 
occurrence and observed SST for all longline sets observed 
by fisheries observers in December 2015 and in December 
2010–2014, respectively. Rates of pilot whale bycatch per unit 
effort (BPUE) were considerably higher in December 2015 than 
in December 2010-2014 (0.32 pilot whales per set in December 
2015 vs. 0.077 pilot whales per set during December 2010–2014). 
***indicates significance at the p < 0.001 level.
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We found that dynamic oceanographic variables (SST, thermal fronts, 
SLA) were important factors driving the habitat of short‐finned pilot 
whales, so predicted spatial distributions of this species showed a 
great deal of variability through time. Dynamic variables were also 
useful in understanding observed temporal patterns of bycatch; for 
example, spatial predictions from our model and satellite SST images 
suggest that higher SST in the area fished played a role in the un-
usually high rates of BPUE observed in December 2015 (Stepanuk 
et al., 2018; Figures 6 and 7). Short‐finned pilot whales feed pri-
marily on mesopelagic and bathypelagic squid and fish, ectothermic 
prey which show distributional shifts in association with changes in 
temperature (Funes‐Rodrigues, Hinojosa‐Medina, Aceves‐Medina, 
Jimenez‐Rosenberg, & Jesus Bautista‐Romero, 2006; Hsieh, Kim, 
Watson, Lorenzo, & Sugihara, 2009; Jensen, Perez, Johnson, Soto, & 
Madsen, 2011; Mintzer et al., 2008). In addition, thermal fronts and 
mesoscale oceanographic features such as Gulf Stream meanders 

and rings may provide enhanced foraging opportunities for forag-
ing marine predators (Dragon, Monestiez, Bar‐Hen, & Guinet, 2010; 
Rodhouse et al., 1996; Scales et al., 2014).

This case study demonstrated that incorporating dynamic ocean-
ographic variables into SDMs can allow times and locations with a 
high risk of pilot whale bycatch to be identified more precisely than 
approaches relying upon static habitat factors alone. The high‐risk 
areas for pilot whale bycatch predicted by our model were consid-
erably smaller than those identified using static variables alone, and 
the extent covered by the high‐risk areas varied seasonally. In both 
February through April and November through January, predicted 
high‐risk areas for pilot whale bycatch were constrained spatially, cov-
ering 12.5% and 12.0%, respectively, of the area identified from static 
habitat features (i.e. the area 15 km inshore of the 1,000‐m isobath). 
Predicted high‐risk areas occurred further north and covered a broader 
area from May through October due to warmer SST values in higher 

F I G U R E  7  Spatial maps of SST and 
predicted probability of short‐finned pilot 
whale occurrence relative to the 75% 
kernel density estimate (KDE) of longline 
sets observed by fisheries observers in 
December 2010–2014 in comparison 
with December 2015. The locations 
of individual longline sets could not be 
displayed for confidentiality purposes
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latitudes during these months, reaching a maximum of 45.9% of the 
area identified using the static approach in August through October. 
However, it is important to note that particularly in winter months, the 
static approach examined here likely overestimates the area used by 
fishers; during winter months, longline fishing effort typically occurs in 
cooler waters than pilot whale observations, but is less likely to occur in 
the northernmost extent of the MAB and NEC (Stepanuk et al. 2018).

The predictive model presented here could be applied to near 
real‐time satellite oceanographic data to produce “now‐casts” of 
high‐risk areas for pilot whale bycatch that could be used to de-
velop management strategies to reduce pilot whale‐longline bycatch 
(sensu Hobday & Hartmann, 2006, Howell et al., 2008, Hazen et al., 
2016). In other regions, near real‐time predictions of bycatch species 
are used to indicate regions that fishers should avoid in order to de-
crease bycatch, or are used by managers to regulate fisher access to 
spatial management zones (Hobday, Hartog, Spillman, & Alves, 2011; 
Howell et al., 2008). Similarly, spatial predictions of the risk of pilot 
whale bycatch in the MAB and SEC could be posted online and re-
vised regularly (daily) based on the most recent environmental data 
to provide up‐to‐date information on high‐risk areas that should be 
avoided. These predictions could be useful to fishers, allowing them 
to reduce costs of lost fish and bait, while providing a conservation 
benefit by decreasing bycatch of a protected species.

In the future, forecasts of oceanographic variables combined with 
cetacean habitat models could provide forecasts of cetacean occur-
rence and could greatly improve planning and decision‐making for 
fishers and managers (Becker et al., 2012, 2018). The utility of this 
approach has been demonstrated in other applications; for example, 
seasonal forecasts of environmental conditions are used to predict 
the distribution of southern Bluefin tuna (Thunnus maccoyii) in the 
Great Australian Bight at lead times of up to 2 months. Forecasts of 
tuna distributions are provided online daily and are used by fishers 
in making operational decisions, such as when and where to fish in 
order to catch their quota more efficiently (Eveson, Hobday, Hartog, 
Spillman, & Rough, 2015; Tommasi et al., 2017). Seasonal forecasts of 
cetacean distributions could be used to mitigate threats, such as by-
catch or ship strikes (Becker et al., 2012; Hazen et al., 2016). Seasonal 
forecasts of variables such as SST are currently available at lead times 
of up to 6–9 months, and international collaborative efforts, such as 
the World Climate Research Program (WCRP) S2S experiment, aim 
to improve forecast skill on subseasonal to seasonal time‐scales. As 
a region strongly influenced by a western boundary current (the Gulf 
Stream), the model skill of seasonal SST forecasts in the north‐east 
United States is currently low (Stock et al., 2015), but future improve-
ments to seasonal forecasts could provide important opportunities 
for predicting and managing living marine resources.

Predictive models are particularly useful for informing conser-
vation and management for species whose distributions are not well 
understood; by understanding how environmental conditions influ-
ence habitat use, predictions can be made in times and places where 
little or no data are available (Thorne et al., 2012). For highly mobile 
species such as cetaceans, observations often cannot be made in all 
habitats or time periods of interest. The telemetry data we used to 

build our predictive models were collected during 2014 and 2015, 
and further satellite tag deployments could be used to improve the 
model predictions presented here. It will be important to verify that 
our model predictions reflect pilot whale habitat use over a broader 
time period. However, our model predictions showed strong agree-
ment with observations of bycatch when applied to POP data outside 
the tagging period (2010–2015), suggesting that these predictions 
are accurate when extrapolated to other time frames. Further, our 
results highlight the importance of telemetry data in producing 
much‐needed data on movement and habitat use for species such as 
pilot whales that are otherwise difficult to study. Due to difficulties 
in distinguishing the two pilot whale species, there was little species‐
level information on pilot whale habitat use in the North Atlantic 
prior to our studies, hampering our understanding of the environ-
mental factors driving the distribution of this species that could be 
used to mitigate pilot whale bycatch. Telemetry data can be used 
to predict the detailed response of species to dynamic oceanogra-
phy, facilitating the development of models that predict habitat in 
space and time, and are thus useful in conservation and manage-
ment (Hazen et al., 2016). In the absence of telemetry data, analyses 
of pilot whale habitat use at the species level would be limited to 
observations from sightings from surveys which are very expensive 
and difficult to acquire; as a result, it would take a long time to ob-
tain sufficient data to build models with a strong predictive capacity. 
Thus, for species that are difficult to study at sea or are sparsely 
distributed, telemetry studies are a powerful means of assessing the 
habitat use of populations facing significant anthropogenic threat 
and allow for informative predictive models to be developed.

While our model performed well in predicting pilot whale by-
catch in the longline fishery in relation to dynamic oceanographic 
variables, pilot whale occurrence in distant Gulf Stream waters was 
not as well represented by the model. Tagged pilot whales occasion-
ally followed Gulf Stream meanders into pelagic waters (Thorne et 
al., 2017), though the vast majority of telemetry locations for short‐
finned pilot whales (>75%) in the present study occurred within 
10 km of the shelf break. Longline fishing effort is focused in prox-
imity to the shelf break, and no pilot whale bycatch was observed 
within these offshore Gulf Stream waters (Garrison, 2007; Stepanuk 
et al., 2018). Thus, although further observations of pilot whales will 
be useful in understanding factors driving the use of pelagic waters, 
we feel that our model predictions in nearshore waters were appro-
priate for assessing the risk of bycatch in the pelagic longline fishery.

In addition to dynamic oceanographic variables, bathymetric 
variables were strong predictors of short‐finned pilot whale hab-
itat. Regions with steep bathymetric slopes in close proximity to 
the shelf break were positively associated with pilot whale occur-
rence, and rates of pilot whale bycatch are known to be higher 
in proximity to the shelf break (Garrison, 2007; Stepanuk et al., 
2018). The shelf break region may provide enhanced foraging op-
portunities for pilot whales as a result of increased primary and 
secondary productivity at the shelf break and/or due to the pres-
ence of steep slopes which may provide a physical barrier that fa-
cilitates the capture of prey (Herman, Sameoto, & Longhurst, 1981; 
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Munk, Larsson, Danielssen, & Moksness, 1995; Sambrotto, Mordy, 
Zeeman, Stabeno, & Macklin, 2008; Thorne et al., 2017; Young et 
al., 2001). Tagged short‐finned pilot whales did not move into wa-
ters of the South Atlantic Bight, although short‐finned pilot whales 
are known to occur in more southerly waters of the south‐eastern 
United States. Short‐finned pilot whales occurring north of Cape 
Hatteras may exhibit a foraging specialization that influences their 
habitat use and leads to a strong association with bathymetric gra-
dients (Thorne et al., 2017). Our model did not predict high proba-
bilities of occurrence in these more southerly waters, where steep 
bathymetric gradients are restricted to deeper waters (>1,200 m 
depth), providing support for the importance of steep bathymetric 
gradients to short‐finned pilot whale habitat in the MAB and NEC 
regions of the United States.

Our results demonstrate that short‐finned pilot whale occur-
rence in the MAB and NEC regions of the United States can be 
predicted using a small number of readily available environmental 
parameters and that our predictive habitat model performs well in 
predicting bycatch of short‐finned pilot whales in the pelagic long-
line fishery. Combining our model outputs with forecasted or near 
real‐time oceanographic data could provide an effective means of 
predicting regions with a high risk of fisheries bycatch. Together 
with advances in satellite oceanography, telemetry data provide an 
important source of data for creating and testing predictive habitat 
models that facilitate the development of adaptive management 
strategies to mitigate fisheries bycatch with protected species.

ACKNOWLEDG EMENTS

We thank the many people involved with fieldwork and tag deploy-
ment, including Heather Foley, Zach Swaim and Danielle Waples, 
as well as Larry Beerkircher (NOAA) and the many dedicated ob-
servers of the POP for the pelagic longline fishery. Funding for 
telemetry studies was provided by the Naval Facilities Engineering 
Command Atlantic, and funding for the analysis of telemetry and 
POP data was provided by the National Marine Fisheries Service 
(NMFS) through the Bycatch Reduction Engineering Program 
(Award NA15NMF4720372 to L. Thorne). Tagging studies were 
authorized under NMFS permit # 17086 to Robin Baird. All re-
search protocols were approved by the Institutional Animal Care 
and Use Committee at the Cascadia Research Collective.

DATA ACCE SSIBILIT Y

Short‐finned pilot whale telemetry tracks are available in Movebank 
(www.movebank.org), under the identifier “short‐finned pilot whales 
CRC NW Atlantic.” Bathymetric and oceanographic data are avail-
able online as indicated in Section 2.

ORCID

Lesley H. Thorne   https://orcid.org/0000-0002-6297-0091 

R E FE R E N C E S

Andrews, R. D., Pitman, R. L., & Ballance, L. T. (2008). Satellite track-
ing reveals distinct movement patterns for Type B and Type C killer 
whales in the southern Ross Sea, Antarctica. Polar Biology, 31, 1461–
1468. https://doi.org/10.1007/s00300-008-0487-z

Araújo, M. B., Pearson, R. G., Thuiller, W., & Erhard, M. (2005). 
Validation of species–climate impact models under climate 
change. Global Change Biology, 11, 1504–1513. https://doi.
org/10.1111/j.1365-2486.2005.01000.x

Baird, R. W., Abrams, P. A., & Dill, L. M. (1992). Possible indirect inter-
actions between transient and resident killer whales: Implications 
for the evolution of foraging specializations in the genus Orcinus. 
Oecologia, 89, 125–132. https://doi.org/10.1007/BF00319024

Baird, R. W., Schorr, G. S., Webster, D. L., McSweeney, D. J., Hanson, 
M. B., & Andrews, R. D. (2010). Movements and habitat use of sat-
ellite‐tagged false killer whales around the main Hawaiian Islands. 
Endangered Species Research, 10, 107–121. https://doi.org/10.3354/
esr00258

Baird, R. W., & Whitehead, H. (2000). Social organization of mammal‐
eating killer whales: Group stability and dispersal patterns. Canadian 
Journal of Zoology, 78, 2096–2105. https://doi.org/10.1139/z00-155

Barlow, J. (1995). The abundance of cetaceans in California waters. Part 
1: Ship surveys in summer and fall of 1991. Fishery Bulletin, 93, 1–14.

Beaman, R. J., O'Brien, P. E., Post, A. L., & De Santis, L. (2011). A new 
high‐resolution bathymetry model for the Terre Adélie and George 
V continental margin, East Antarctica. Antarctic Science, 23, 95–103. 
https://doi.org/10.1017/S095410201000074X

Becker, E., Foley, D., Forney, K., Barlow, J., Redfern, J., & Gentemann, C. 
(2012). Forecasting cetacean abundance patterns to enhance man-
agement decisions. Endangered Species Research, 16, 97–112. https://
doi.org/10.3354/esr00390

Becker, E. A., Forney, K. A., Redfern, J. V., Barlow, J., Jacox, M. G., Roberts, 
J. J., & Palacios, D. M. (2018). Predicting cetacean abundance and 
distribution in a changing climate. Diversity and Distributions, 1–18, 
https://doi.org/10.1111/ddi.12867

Beerkircher, L. R., Lee, D. W., Brown, C. J., & Abercrombie, D. L. (2002). 
SEFSC pelagic observer program data summary for 1992–2000. US 
Department of Commerce, National Oceanic and Atmospheric 
Administration, National Marine Fisheries Service, Southeast 
Fisheries Science Center.

Bisack, K. D., & Sutinen, J. G. (2006). Harbor porpoise bycatch: ITQs or 
time/area closures in the New England gillnet fishery. Land Economics, 
82, 85–102. https://doi.org/10.3368/le.82.1.85

Briscoe, D. K., Fossette, S., Scales, K. L., Hazen, E. L., Bograd, S. J., 
Maxwell, S. M., … Lewison, R. L. (2018). Characterizing habitat 
suitability for a central‐place forager in a dynamic marine environ-
ment. Ecology and Evolution, 8, 2788–2801. https://doi.org/10.1002/
ece3.3827

Carretta, J. V., & Barlow, J. (2011). Long‐term effectiveness, failure rates, 
and “dinner bell” properties of acoustic pingers in a gillnet fishery. 
Marine Technology Society Journal, 45, 7–19. https://doi.org/10.4031/
MTSJ.45.5.3

Cayula, J.‐F., & Cornillon, P. (1992). Edge detection algorithm for SST im-
ages. Journal of Atmospheric and Oceanic Technology, 9, 67–80. https://
doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2

Chatfield, C. (1995). Model uncertainty, data mining and statistical infer-
ence (with discussion). Journal of the Royal Statistical Society. Series A: 
Statistics in Society, 158, 419–466. https://doi.org/10.2307/2983440

Cotté, C., Park, Y.‐H., Guinet, C., & Bost, C.‐A. (2007). Movements of for-
aging king penguins through marine mesoscale eddies. Proceedings 
of the Royal Society of London B: Biological Sciences, 274, 2385–2391.

Dalton, M. G., & Ralston, S. (2004). The California rockfish conservation 
area and groundfish trawlers at moss landing harbor. Marine Resource 
Economics, 19, 67–83. https://doi.org/10.1086/mre.19.1.42629419

http://www.movebank.org
https://orcid.org/0000-0002-6297-0091
https://orcid.org/0000-0002-6297-0091
https://doi.org/10.1007/s00300-008-0487-z
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1111/j.1365-2486.2005.01000.x
https://doi.org/10.1007/BF00319024
https://doi.org/10.3354/esr00258
https://doi.org/10.3354/esr00258
https://doi.org/10.1139/z00-155
https://doi.org/10.1017/S095410201000074X
https://doi.org/10.3354/esr00390
https://doi.org/10.3354/esr00390
https://doi.org/10.1111/ddi.12867
https://doi.org/10.3368/le.82.1.85
https://doi.org/10.1002/ece3.3827
https://doi.org/10.1002/ece3.3827
https://doi.org/10.4031/MTSJ.45.5.3
https://doi.org/10.4031/MTSJ.45.5.3
https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
https://doi.org/10.2307/2983440
https://doi.org/10.1086/mre.19.1.42629419


     |  921THORNE et al.

Douglas, D. C., Weinzierl, R., C. Davidson, S., Kays, R., Wikelski, M., & 
Bohrer, G. (2012). Moderating Argos location errors in animal track-
ing data. Methods in Ecology and Evolution, 3, 999–1007. https://doi.
org/10.1111/j.2041-210X.2012.00245.x

Dragon, A.‐C., Monestiez, P., Bar‐Hen, A., & Guinet, C. (2010). Linking 
foraging behaviour to physical oceanographic structures: Southern 
elephant seals and mesoscale eddies east of Kerguelen Islands. 
Progress in Oceanography, 87, 61–71. https://doi.org/10.1016/j.
pocean.2010.09.025

Dunn, D. C., Boustany, A. M., & Halpin, P. N. (2011). Spatio‐tempo-
ral management of fisheries to reduce by‐catch and increase 
fishing selectivity. Fish and Fisheries, 12, 110–119. https://doi.
org/10.1111/j.1467-2979.2010.00388.x

Dunn, D. C., Kot, C. Y., & Halpin, P. N. (2008). A comparison of methods to 
spatially represent pelagic longline fishing effort in catch and bycatch 
studies. Fisheries Research, 92, 268–276. https://doi.org/10.1016/j.
fishres.2008.01.006

Dunn, D. C., Maxwell, S. M., Boustany, A. M., & Halpin, P. N. (2016). 
Dynamic ocean management increases the efficiency and efficacy 
of fisheries management. Proceedings of the National Academy of 
Sciences, 113, 668–673.

Esteban, F., Tassone, A., Menichetti, M., & Lodolo, E. (2017). Application 
of slope maps as a complement of bathymetry: Example from the SW 
Atlantic. Marine Geodesy, 40, 57–71. https://doi.org/10.1080/01490
419.2016.1269033

Eveson, J. P., Hobday, A. J., Hartog, J. R., Spillman, C. M., & Rough, K. M. 
(2015). Seasonal forecasting of tuna habitat in the Great Australian 
Bight. Fisheries Research, 170, 39–49. https://doi.org/10.1016/j.
fishres.2015.05.008

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assess-
ment of prediction errors in conservation presence/absence mod-
els. Environmental Conservation, 24, 38–49. https://doi.org/10.1017/
S0376892997000088

Fullard, K., Early, G., Heide‐Jørgensen, M., Bloch, D., Rosing‐Asvid, A., & 
Amos, W. (2000). Population structure of long‐finned pilot whales 
in the North Atlantic: A correlation with sea surface temperature? 
Molecular Ecology, 9, 949–958.

Funes‐Rodrigues, R., Hinojosa‐Medina, A., Aceves‐Medina, G., Jimenez‐
Rosenberg, S., & Jesus Bautista‐Romero, J. (2006). Influences 
of El Niño on assemblages of mesopelagic fish larvae along the 
Pacific coast of Baja California Sur. Fisheries Oceanography, 15,  
244–255.

Gannon, D. P., Read, A. J., Craddock, J. E., Fristrup, K. M., & Nicolas, J. 
R. (1997). Feeding ecology of long‐finned pilot whales Globicephala 
melas in the western North Atlantic. Marine Ecology Progress Series, 
1–10. https://doi.org/10.3354/meps148001

Garrison, L. P. (2007). Interactions between marine mammals and pelagic 
longline fishing gear in the US Atlantic Ocean between 1992 and 
2004. Fishery Bulletin, 105, 408–417.

Genin, A., Greene, C., Haury, L., Wiebe, P., Gal, G., Kaartvedt, S., 
… Dawson, J. (1994). Zooplankton patch dynamics: Daily gap 
formation over abrupt topography. Deep Sea Research Part 
I: Oceanographic Research Papers, 41, 941–951. https://doi.
org/10.1016/0967-0637(94)90085-X

Gillies, C. S., Hebblewhite, M., Nielsen, S. E., Krawchuk, M. A., 
Aldridge, C. L., Frair, J. L., … Jerde, C. L. (2006). Application 
of random effects to the study of resource selection by an-
imals. Journal of Animal Ecology, 75, 887–898. https://doi.
org/10.1111/j.1365-2656.2006.01106.x

Gilman, E., Brothers, N., McPherson, G., & Dalzell, P. (2007). A review of 
cetacean interactions with longline gear. Journal of Cetacean Research 
and Management, 8, 215.

Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution 
models in ecology. Ecological Modelling, 135, 147–186. https://doi.
org/10.1016/S0304-3800(00)00354-9

Hart, K. M., & Hyrenbach, K. D. (2009). Satellite telemetry of marine 
megavertebrates: The coming of age of an experimental science. 
Endangered Species Research, 10, 9–20. https://doi.org/10.3354/
esr00238

Hartel, E. F., Constantine, R., & Torres, L. G. (2015). Changes in habitat use 
patterns by bottlenose dolphins over a 10‐year period render static 
management boundaries ineffective. Aquatic Conservation: Marine 
and Freshwater Ecosystems, 25, 701–711. https://doi.org/10.1002/
aqc.2465

Hayes, S. A., Josephson, E., Maze‐Foley, K., Rosel, P. E., Byrd, B. L., Cole, 
T., …Henry, A. (2017). US Atlantic and Gulf of Mexico Marine Mammal 
Stock Assessments− 2016. NOAA Tech. Memo. NMFS NE, 241.

Hazen, E. L., Jorgensen, S., Rykaczewski, R. R., Bograd, S. J., Foley, D. 
G., Jonsen, I. D., … Block, B. A. (2013). Predicted habitat shifts of 
Pacific top predators in a changing climate. Nature Climate Change, 3, 
234–238. https://doi.org/10.1038/nclimate1686

Hazen, E. L., Palacios, D. M., Forney, K. A., Howell, E. A., Becker, E., 
Hoover, A. L., … Mate, B. R. (2016). WhaleWatch: A dynamic manage-
ment tool for predicting blue whale density in the California Current. 
Journal of Applied Ecology, 54, 1415–1428.

Hazen, E. L., Scales, K. L., Maxwell, S. M., Briscoe, D. K., Welch, H., 
Bograd, S. J., … Lewison, R. L. (2018). A dynamic ocean manage-
ment tool to reduce bycatch and support sustainable fisheries. 
ScienceAdvances, 4, eaar3001. https://doi.org/10.1126/sciadv.
aar3001

Herman, A. W., Sameoto, D. D., & Longhurst, A. R. (1981). Vertical and 
horizontal distribution patterns of copepods near the shelf break 
south of Nova Scotia. Canadian Journal of Fisheries and Aquatic 
Sciences, 38, 1065–1076. https://doi.org/10.1139/f81-147

Hobday, A., & Hartmann, K. (2006). Near real‐time spatial manage-
ment based on habitat predictions for a longline bycatch spe-
cies. Fisheries Management and Ecology, 13, 365–380. https://doi.
org/10.1111/j.1365-2400.2006.00515.x

Hobday, A. J., Hartog, J. R., Spillman, C. M., & Alves, O. (2011). Seasonal 
forecasting of tuna habitat for dynamic spatial management. 
Canadian Journal of Fisheries and Aquatic Sciences, 68, 898–911. 
https://doi.org/10.1139/f2011-031

Hosmer, D., & Lemeshow, S. (2000). Applied logistic regression. New York, 
NY: John Wiley & Sons Inc.

Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H., & Polovina, 
J. J. (2008). TurtleWatch: A tool to aid in the bycatch reduction of 
loggerhead turtles Caretta caretta in the Hawaii‐based pelagic long-
line fishery. Endangered Species Research, 5, 267–278. https://doi.
org/10.3354/esr00096

Hsieh, C.‐H., Kim, H. J., Watson, W., Di Lorenzo, E., & Sugihara, G. (2009). 
Climate‐driven changes in abundance and distribution of larvae of 
oceanic fishes in the southern California region. Global Change Biology, 
15, 2137–2152. https://doi.org/10.1111/j.1365-2486.2009.01875.x

Hunt, G. Jr, & Schneider, D. (1987). Scale‐dependent processes in the 
physical and biological environment of marine birds. In J. P. Croxall 
(Eds.), Seabirds: feeding ecology and role in marine ecosystems (pp. 7–
41). Cambridge, UK: Cambridge University Press.

Irons, D. B. (1998). Foraging area fidelity of individual seabirds in relation 
to tidal cycles and flock feeding. Ecology, 79, 647–655. https://doi.
org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2

Jensen, F. H., Perez, J. M., Johnson, M., Soto, N. A., & Madsen, P. T. 
(2011). Calling under pressure: short‐finned pilot whales make so-
cial calls during deep foraging dives. Proceedings of the Royal Society 
of London B: Biological Sciences, 278(1721), 3017–3025. https://doi.
org/10.1098/rspb.2010.2604.

Johnston, D., Thorne, L., & Read, A. (2005). Fin whales Balaenoptera 
physalus and minke whales Balaenoptera acutorostrata exploit a 
tidally driven island wake ecosystem in the Bay of Fundy. Marine 
Ecology Progress Series, 305, 287–295. https://doi.org/10.3354/
meps305287

https://doi.org/10.1111/j.2041-210X.2012.00245.x
https://doi.org/10.1111/j.2041-210X.2012.00245.x
https://doi.org/10.1016/j.pocean.2010.09.025
https://doi.org/10.1016/j.pocean.2010.09.025
https://doi.org/10.1111/j.1467-2979.2010.00388.x
https://doi.org/10.1111/j.1467-2979.2010.00388.x
https://doi.org/10.1016/j.fishres.2008.01.006
https://doi.org/10.1016/j.fishres.2008.01.006
https://doi.org/10.1080/01490419.2016.1269033
https://doi.org/10.1080/01490419.2016.1269033
https://doi.org/10.1016/j.fishres.2015.05.008
https://doi.org/10.1016/j.fishres.2015.05.008
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.3354/meps148001
https://doi.org/10.1016/0967-0637(94)90085-X
https://doi.org/10.1016/0967-0637(94)90085-X
https://doi.org/10.1111/j.1365-2656.2006.01106.x
https://doi.org/10.1111/j.1365-2656.2006.01106.x
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.1016/S0304-3800(00)00354-9
https://doi.org/10.3354/esr00238
https://doi.org/10.3354/esr00238
https://doi.org/10.1002/aqc.2465
https://doi.org/10.1002/aqc.2465
https://doi.org/10.1038/nclimate1686
https://doi.org/10.1126/sciadv.aar3001
https://doi.org/10.1126/sciadv.aar3001
https://doi.org/10.1139/f81-147
https://doi.org/10.1111/j.1365-2400.2006.00515.x
https://doi.org/10.1111/j.1365-2400.2006.00515.x
https://doi.org/10.1139/f2011-031
https://doi.org/10.3354/esr00096
https://doi.org/10.3354/esr00096
https://doi.org/10.1111/j.1365-2486.2009.01875.x
https://doi.org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2
https://doi.org/10.1098/rspb.2010.2604
https://doi.org/10.1098/rspb.2010.2604
https://doi.org/10.3354/meps305287
https://doi.org/10.3354/meps305287


922  |     THORNE et al.

Keene, K. F., Beerkircher, L. R., & Lee, D. W. (2007). SEFSC Pelagic Observer 
Program data summary for 1992–2004. US Department of Commerce, 
National Oceanic and Atmospheric Administration, National Marine 
Fisheries Service, Southeast Fisheries Science Center.

Kock, K.‐H., Purves, M. G., & Duhamel, G. (2006). Interactions between 
cetacean and fisheries in the Southern Ocean. Polar Biology, 29, 379–
388. https://doi.org/10.1007/s00300-005-0067-4

Lewison, R. L., Crowder, L. B., Read, A. J., & Freeman, S. A. (2004). 
Understanding impacts of fisheries bycatch on marine megafauna. 
Trends in Ecology & Evolution, 19, 598–604. https://doi.org/10.1016/j.
tree.2004.09.004

Lewison, R. l., Crowder, L. B., Wallace, B. P., Moore, J. E., Cox, T., Zydelis, R., 
… Safina, C. (2014). Global patterns of marine mammal, seabird, and sea 
turtle bycatch reveal taxa‐specific and cumulative megafauna hotspots. 
Proceedings of the National Academy of Sciences of the United States of 
America, 111, 5271–5276. https://doi.org/10.1073/pnas.1318960111

Manel, S., Dias, J.‐M., & Ormerod, S. J. (1999). Comparing discrim-
inant analysis, neural networks and logistic regression for pre-
dicting species distributions: A case study with a Himalayan river 
bird. Ecological Modelling, 120, 337–347. https://doi.org/10.1016/
S0304-3800(99)00113-1

Maxwell, S. M., Hazen, E. L., Lewison, R. L., Dunn, D. C., Bailey, H., Bograd, 
S. J., … Crowder, L. B. (2015). Dynamic ocean management: Defining 
and conceptualizing real‐time management of the ocean. Marine 
Policy, 58, 42–50. https://doi.org/10.1016/j.marpol.2015.03.014

McDonald, S. L., Lewison, R. L., & Read, A. J. (2016). Evaluating the ef-
ficacy of environmental legislation: A case study from the US ma-
rine mammal Take Reduction Planning process. Global Ecology and 
Conservation, 5, 1–11. https://doi.org/10.1016/j.gecco.2015.11.009

McManus, M. A., & Woodson, C. B. (2012). Plankton distribution and 
ocean dispersal. Journal of Experimental Biology, 215, 1008–1016. 
https://doi.org/10.1242/jeb.059014

Mintzer, V. J., Gannon, D. P., Barros, N. B., & Read, A. J. (2008). Stomach 
contents of mass‐stranded short‐finned pilot whales (Globicephala 
macrorhynchus) from North Carolina. Marine Mammal Science, 24, 
290–302. https://doi.org/10.1111/j.1748-7692.2008.00189.x

Moore, J. E., Wallace, B. P., Lewison, R. L., Žydelis, R., Cox, T. M., & 
Crowder, L. B. (2009). A review of marine mammal, sea turtle and 
seabird bycatch in USA fisheries and the role of policy in shaping 
management. Marine Policy, 33, 435–451. https://doi.org/10.1016/j.
marpol.2008.09.003

Moore, S. E., & Lien, R. C. (2007). Pilot whales follow internal solitary 
waves in the South China Sea. Marine Mammal Science, 23, 193–196. 
https://doi.org/10.1111/j.1748-7692.2006.00086.x

Munk, P., Larsson, P. O., Danielssen, D. S., & Moksness, E. (1995). Larval 
and small juvenile cod Gadus morhua concentrated in the highly pro-
ductive areas of a shelf break front.

Murray, K. T., Read, A. J., & SoLow, A. R. (2000). The use of time/area 
closures to reduce bycatches of harbour porpoises: Lessons from the 
Gulf of Maine sink gillnet fishery. Journal of Cetacean Research and 
Management, 2, 135–141.

NMFS (2006). Final consolidated Atlantic highly migratory species fish-
ery management plan. Silver Spring, MD: National Oceanic and 
Atmospheric Administration, National Marine Fisheries Service.

O'Keefe, C. E., Cadrin, S. X., & Stokesbury, K. D. (2013). Evaluating ef-
fectiveness of time/area closures, quotas/caps, and fleet communi-
cations to reduce fisheries bycatch. ICES Journal of Marine Science, 
71, 1286–1297.

Olden, J. D., Jackson, D. A., & Peres‐Neto, P. R. (2002). Predictive models of 
fish species distributions: A note on proper validation and chance predic-
tions. Transactions of the American Fisheries Society, 131, 329–336. https://
doi.org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2

Pearce, J., & Ferrier, S. (2000). Evaluating the predictive performance of 
habitat models developed using logistic regression. Ecological Modelling, 
133, 225–245. https://doi.org/10.1016/S0304-3800(00)00322-7

Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change 
and distribution shifts in marine fishes. Science, 308, 1912–1915.

Quick, N. J., Isojunno, S., Sadykova, D., Bowers, M., Nowacek, D. P., & 
Read, A. J. (2017). Hidden Markov models reveal complexity in the 
diving behaviour of short‐finned pilot whales. Scientific Reports, 7, 
45765. https://doi.org/10.1038/srep45765

Read, A. J. (2008). The looming crisis: Interactions between marine mam-
mals and fisheries. Journal of Mammalogy, 89, 541–548. https://doi.
org/10.1644/07-MAMM-S-315R1.1

Read, A. J. (2013). Development of conservation strategies to mitigate 
the bycatch of harbor porpoises in the Gulf of Maine. Endangered 
Species Research, 20, 235–250.

Read, A. J., Drinker, P., & Northridge, S. (2006). Bycatch of marine mam-
mals in US and global fisheries. Conservation Biology, 20, 163–169. 
https://doi.org/10.1111/j.1523-1739.2006.00338.x

Reeves, R. R., McClellan, K., & Werner, T. B. (2013). Marine mammal 
bycatch in gillnet and other entangling net fisheries, 1990 to 2011. 
Endangered Species Research, 20, 71–97. https://doi.org/10.3354/
esr00481

Reilly, S., & Barlow, J. (1986). Rates of increase in dolphin population size. 
Fishery Bulletin, 84, 527–533.

Rendell, L., & Whitehead, H. (2001). Culture in whales and dolphins. 
Behavioral and Brain Sciences, 24, 309–324. https://doi.org/10.1017/
S0140525X0100396X

Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., & Halpin, P. N. (2010). 
Marine Geospatial Ecology Tools: An integrated framework for eco-
logical geoprocessing with ArcGIS, Python, R, MATLAB, and C++. 
Environmental Modelling & Software, 25, 1197–1207. https://doi.
org/10.1016/j.envsoft.2010.03.029

Rodhouse, P., Prince, P., Trathan, P., Hatfield, E., Watkins, J., Bone, D., 
… White, M. (1996). Cephalopods and mesoscale oceanography at 
the Antarctic Polar Front: Satellite tracked predators locate pelagic 
trophic interactions. Marine Ecology Progress Series. Oldendorf, 136, 
37–50. https://doi.org/10.3354/meps136037

Roe, J. H., Morreale, S. J., Paladino, F. V., Shillinger, G. l., Benson, S. R., 
Eckert, S. A., … Spotila, J. R. (2014). Predicting bycatch hotspots for 
endangered leatherback turtles on longlines in the Pacific Ocean. 
Proceedings of the Royal Society of London B: Biological Sciences, 281, 
20132559. https://doi.org/10.1098/rspb.2013.2559

Rone, B. K., & Pace, R. M. III (2012). A simple photograph‐based approach 
for discriminating between free‐ranging long‐finned (Globicephala 
melas) and short‐finned (G. macrorhynchus) pilot whales off the east 
coast of the United States. Marine Mammal Science, 28, 254–275. 
https://doi.org/10.1111/j.1748-7692.2011.00488.x

Ropert‐Coudert, Y., & Wilson, R. P. (2005). Trends and perspectives 
in animal‐attached remote sensing. Frontiers in Ecology and the 
Environment, 3, 437–444. https://doi.org/10.1890/1540-9295(2005
)003[0437:TAPIAR]2.0.CO;2

Sambrotto, R. N., Mordy, C., Zeeman, S. I., Stabeno, P. J., & Macklin, S. 
A. (2008). Physical forcing and nutrient conditions associated with 
patterns of Chl a and phytoplankton productivity in the southeast-
ern Bering Sea during summer. Deep Sea Research Part II: Topical 
Studies in Oceanography, 55, 1745–1760. https://doi.org/10.1016/j.
dsr2.2008.03.003

Scales, K. L., Miller, P. I., Embling, C. B., Ingram, S. N., Pirotta, E., & Votier, 
S. C. (2014). Mesoscale fronts as foraging habitats: Composite front 
mapping reveals oceanographic drivers of habitat use for a pelagic 
seabird. Journal of the Royal Society Interface, 11, 20140679. https://
doi.org/10.1098/rsif.2014.0679

Schakner, Z. A., Lunsford, C., Straley, J., Eguchi, T., & Mesnick, S. L. (2014). 
Using models of social transmission to examine the spread of longline 
depredation behavior among sperm whales in the Gulf of Alaska. PLoS 
ONE, 9, e109079. https://doi.org/10.1371/journal.pone.0109079

Shillinger, G. L., Swithenbank, A. M., Bailey, H., Bograd, S. J., Castelton, 
M. R., Wallace, B. P., … Block, B. A. (2011). Vertical and horizontal 

https://doi.org/10.1007/s00300-005-0067-4
https://doi.org/10.1016/j.tree.2004.09.004
https://doi.org/10.1016/j.tree.2004.09.004
https://doi.org/10.1073/pnas.1318960111
https://doi.org/10.1016/S0304-3800(99)00113-1
https://doi.org/10.1016/S0304-3800(99)00113-1
https://doi.org/10.1016/j.marpol.2015.03.014
https://doi.org/10.1016/j.gecco.2015.11.009
https://doi.org/10.1242/jeb.059014
https://doi.org/10.1111/j.1748-7692.2008.00189.x
https://doi.org/10.1016/j.marpol.2008.09.003
https://doi.org/10.1016/j.marpol.2008.09.003
https://doi.org/10.1111/j.1748-7692.2006.00086.x
https://doi.org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2
https://doi.org/10.1577/1548-8659(2002)131<0329:PMOFSD>2.0.CO;2
https://doi.org/10.1016/S0304-3800(00)00322-7
https://doi.org/10.1038/srep45765
https://doi.org/10.1644/07-MAMM-S-315R1.1
https://doi.org/10.1644/07-MAMM-S-315R1.1
https://doi.org/10.1111/j.1523-1739.2006.00338.x
https://doi.org/10.3354/esr00481
https://doi.org/10.3354/esr00481
https://doi.org/10.1017/S0140525X0100396X
https://doi.org/10.1017/S0140525X0100396X
https://doi.org/10.1016/j.envsoft.2010.03.029
https://doi.org/10.1016/j.envsoft.2010.03.029
https://doi.org/10.3354/meps136037
https://doi.org/10.1098/rspb.2013.2559
https://doi.org/10.1111/j.1748-7692.2011.00488.x
https://doi.org/10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
https://doi.org/10.1890/1540-9295(2005)003[0437:TAPIAR]2.0.CO;2
https://doi.org/10.1016/j.dsr2.2008.03.003
https://doi.org/10.1016/j.dsr2.2008.03.003
https://doi.org/10.1098/rsif.2014.0679
https://doi.org/10.1098/rsif.2014.0679
https://doi.org/10.1371/journal.pone.0109079


     |  923THORNE et al.

habitat preferences of post‐nesting leatherback turtles in the South 
Pacific Ocean. Marine Ecology Progress Series, 422, 275–289. https://
doi.org/10.3354/meps08884

Sims, D. W., & Quayle, V. A. (1998). Selective foraging behaviour of bask-
ing sharks on zooplankton in a small‐scale front. Nature, 393, 460–
464. https://doi.org/10.1038/30959

Stepanuk, J. E., Read, A. J., Baird, R. W., Webster, D. L., & Thorne, L. 
H. (2018). Spatiotemporal patterns of overlap between short‐finned 
pilot whales and the US pelagic longline fishery in the Mid‐Atlantic 
Bight: An assessment to inform the management of fisheries by-
catch. Fisheries Research, 208, 309–320. https://doi.org/10.1016/j.
fishres.2018.07.008

Stock, C. A., Pegion, K., Vecchi, G. A., Alexander, M. A., Tommasi, D., 
Bond, N. A., … Yang, X. (2015). Seasonal sea surface temperature 
anomaly prediction for coastal ecosystems. Progress in Oceanography, 
137, 219–236. https://doi.org/10.1016/j.pocean.2015.06.007

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. 
Science, 240, 1285. https://doi.org/10.1126/science.3287615

Thode, A., Straley, J., Tiemann, C. O., Folkert, K., & O’Connell, V. 
(2007). Observations of potential acoustic cues that attract 
sperm whales to longline fishing in the Gulf of Alaska. The Journal 
of the Acoustical Society of America, 122, 1265–1277. https://doi.
org/10.1121/1.2749450

Thorne, L. H., Foley, H. J., Baird, R. W., Webster, D. L., Swaim, Z. T., & 
Read, A. J. (2017). Movement and foraging behavior of short‐finned 
pilot whales in the Mid‐Atlantic Bight: Importance of bathymetric 
features and implications for management. Marine Ecology Progress 
Series, 584, 245–257. https://doi.org/10.3354/meps12371

Thorne, L. H., Hazen, E. L., Bograd, S. J., Foley, D. G., Conners, M. G., 
Kappes, M. A., … Shaffer, S. A. (2015). Foraging behavior links climate 
variability and reproduction in North Pacific albatrosses. Movement 
Ecology, 3, 27. https://doi.org/10.1186/s40462-015-0050-9

Thorne, L. H., Johnston, D. W., Urban, D. L., Tyne, J., Bejder, L., Baird, 
R. W., … Chapla Hill, M. (2012). Predictive modeling of spinner 
dolphin (Stenella longirostris) resting habitat in the main Hawaiian 
Islands. PLoS ONE, 7, e43167. https://doi.org/10.1371/journal.
pone.0043167

Tommasi, D., Stock, C. A., Hobday, A. J., Methot, R., Kaplan, I. C., Eveson, 
J. P., … Werner, F. E. (2017). Managing living marine resources in a dy-
namic environment: The role of seasonal to decadal climate forecasts. 
Progress in Oceanography, 152, 15–49. https://doi.org/10.1016/j.
pocean.2016.12.011

Torres, L. G., Sutton, P. J., Thompson, D. R., Delord, K., Weimerskirch, H., 
Sagar, P. M., … Phillips, R. A. (2015). Poor transferability of species 
distribution models for a pelagic predator, the grey petrel, indicates 
contrasting habitat preferences across ocean basins. PLoS ONE, 10, 
e0120014. https://doi.org/10.1371/journal.pone.0120014

US OFR (US Office of the Federal Register) (2009). Taking of marine 
mammals incidental to commercial fishing operations; Atlantic pe-
lagic longline take reduction plan. Final rule. Fed. Regist. 74(95), 
23349–23358.

US OFR (US Office of the Federal Register) (2016). Draft 2016 Marine 
Mammal Stock Assessment Reports. Federal Register, 81(196), 
70097–70099.

Waring, G. T., Josephson, E., Maze‐Foley, K., & Rosel, P. E. (2013). US 
Atlantic and Gulf of Mexico marine mammal stock assessments–2012. 
NOAA Tech Memo NMFS NE, 223, 02543‐1026.

Waring, G. T., Josephson, E., Maze‐Foley, K., & Rosel, P. E. (2015). US 
Atlantic and Gulf of Mexico marine mammal stock assessments‐2014. 
NOAA Tech Memo NMFS NE, 231, 361.

Weatherall, P., Marks, K., Jakobsson, M., Schmitt, T., Tani, S., Arndt, 
J. E., … Wigley, R. (2015). A new digital bathymetric model of the 
world's oceans. Earth and Space Science, 2, 331–345. https://doi.
org/10.1002/2015EA000107

Weimerskirch, H. (2007). Are seabirds foraging for unpredictable re-
sources? Deep Sea Research Part II: Topical Studies in Oceanography, 
54, 211–223.

Werner, T., Kraus, S., Read, A., & Zollett, E. (2006). Fishing tech-
niques to reduce the bycatch of threatened marine animals. 
Marine Technology Society Journal, 40, 50–68. https://doi.
org/10.4031/002533206787353204

Willis‐Norton, E., Hazen, E. L., Fossette, S., Shillinger, G., Rykaczewski, 
R. R., Foley, D. G., … Bograd, S. J. (2015). Climate change impacts 
on leatherback turtle pelagic habitat in the Southeast Pacific. Deep 
Sea Research Part II: Topical Studies in Oceanography, 113, 260–267. 
https://doi.org/10.1016/j.dsr2.2013.12.019

Wood, S. N. (2004). Stable and efficient multiple smoothing pa-
rameter estimation for generalized additive models. Journal of 
the American Statistical Association, 99, 673–686. https://doi.
org/10.1198/016214504000000980

Young, J., Bradford, R., Lamb, T., Clementson, L., Kloser, R., & Galea, H. 
(2001). Yellowfin tuna (Thunnus albacares) aggregations along the 
shelf break off south‐eastern Australia: Links between inshore and 
offshore processes. Marine and Freshwater Research, 52, 463–474. 
https://doi.org/10.1071/MF99168

Žydelis, R., Lewison, R. L., Shaffer, S. A., Moore, J. E., Boustany, A. M., 
Roberts, J. J., … Tremblay, Y. (2011). Dynamic habitat models: using 
telemetry data to project fisheries bycatch. Proceedings of the Royal 
Society of London B: Biological Sciences, 278, 3191–3200.

BIOSKE TCH

The shared interests of the research team focus on the use of 
telemetry, satellite oceanography and quantitative methods to 
evaluate the habitat use of pelagic marine mammals in order to 
inform management and conservation efforts.

Author contributions: L.H.T. and A.J.R. conceived the idea for 
this manuscript; R.W.B., D.L.W. and A.J.R. led tagging stud-
ies; L.H.T. designed the study and analysed the data; J.E.S. as-
sisted with analyses; and L.H.T. led the writing with all authors 
participating.

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.    

How to cite this article: Thorne LH, Baird RW, Webster DL, 
Stepanuk JE, Read AJ. Predicting fisheries bycatch: A case 
study and field test for pilot whales in a pelagic longline fishery. 
Divers Distrib. 2019;25:909–923. https://doi.org/10.1111/
ddi.12912

https://doi.org/10.3354/meps08884
https://doi.org/10.3354/meps08884
https://doi.org/10.1038/30959
https://doi.org/10.1016/j.fishres.2018.07.008
https://doi.org/10.1016/j.fishres.2018.07.008
https://doi.org/10.1016/j.pocean.2015.06.007
https://doi.org/10.1126/science.3287615
https://doi.org/10.1121/1.2749450
https://doi.org/10.1121/1.2749450
https://doi.org/10.3354/meps12371
https://doi.org/10.1186/s40462-015-0050-9
https://doi.org/10.1371/journal.pone.0043167
https://doi.org/10.1371/journal.pone.0043167
https://doi.org/10.1016/j.pocean.2016.12.011
https://doi.org/10.1016/j.pocean.2016.12.011
https://doi.org/10.1371/journal.pone.0120014
https://doi.org/10.1002/2015EA000107
https://doi.org/10.1002/2015EA000107
https://doi.org/10.4031/002533206787353204
https://doi.org/10.4031/002533206787353204
https://doi.org/10.1016/j.dsr2.2013.12.019
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1198/016214504000000980
https://doi.org/10.1071/MF99168
https://doi.org/10.1111/ddi.12912
https://doi.org/10.1111/ddi.12912

