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Abstract 

Short-finned pilot whales (Globicephala macrorhynchus) are the most frequently 

sighted odontocete in a long-term study in Hawai„i (representing 23.8% of all odontocete 

sightings from directed research efforts), yet little has been published on this species in 

Hawaiian waters.  Studies elsewhere have suggested that short-finned pilot whales travel 

in stable mixed-sex groups composed of strongly associated individuals; however 

temporal analyses of social structure are lacking.  To examine site fidelity, association 

patterns and temporal relationships, I analyzed data from 267 directed research and 

opportunistic encounters of short-finned pilot whales off the island of Hawai„i from 2003 

through 2007.  Sightings occurred year-round.  Analysis of sighting depths in relation to 

effort indicated short-finned pilot whales are strongly associated with the island slope, 

with no sightings in water >2,700m deep despite effort to ~5,000m.  Using only good-

quality photos, I identified 448 distinctive individuals; of these, 305 (68.1%) were seen 

more than once and 250 (55.8%) were seen in >1 year. Sighting histories varied from 1-

29 sightings per individual (median=3) over the course of the study, suggesting only 

some individuals exhibit high site fidelity.  Degree of residency was assessed using multi-

year site fidelity to the study area; individuals seen ≥5 times in ≥3 years were considered 

core residents (154 individuals), individuals who fell below these criteria but that were 

seen more than once were termed residents (150 individuals) and those seen on a single 

occasion were termed visitors (142 individuals).  Only 71.9% of the whales were linked 

by association into a single social network, suggesting the possibility of multiple 

populations using the study area. Individuals demonstrated preferential associations and 

community division was strongly supported by average-linkage hierarchical cluster 
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analysis of the association data.  Nine longitudinally-stable social units composed of key 

individuals (seen together ≥8 times in ≥4 years) and their constant companions (seen 

together ≥5 times in ≥3 years) were identified (unit membership 5-16, median=10.5; 

mean unit association index: 0.62-0.90).  Qualitative assignment of age and sex classes to 

unit members indicated that some segregation between adult males and female/calf pairs 

may occur.  Temporal analysis using standardized lagged association rates of individuals 

grouped in the same encounter produced a best-fit model where dyads gradually 

disassociated over time while individuals grouped in the same day produced a model 

where dyads remained in association, suggesting companions not documented during an 

encounter are likely still present in the study area.  Differential patterns of residency and 

site fidelity were unexpected and may be indicative of multiple populations around the 

main Hawaiian Islands.  Additionally, the presence of a core resident population 

demonstrating strong, long-term site fidelity and associations off the island of Hawai„i 

may warrant special management considerations.  Evidence of fisheries-related injuries in 

addition to anthropogenic threats such as high levels of commercial and recreational 

vessel traffic, targeted tourist activities, and commercial and sports troll fisheries indicate 

that additional research is needed to evaluate potential threats to this island-associated 

population.   
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Chapter 1: Background/Literature review 

Cetacean social systems and research 

Cetacean social systems 

Cetaceans are a dynamic order within the class Mammalia, composed of more 

than 80 species of whales, dolphins and porpoises inhabiting a variety of marine and 

freshwater systems worldwide.  The diversity of the cetacean taxon is a reflection of the 

physiological, ecological and behavioral adaptations necessary for a mammal to spend its 

life in an entirely aquatic environment while also being exposed to extreme habitats.  The 

cetacean's ability to exploit a wide range of environmental conditions, from freezing 

temperatures to extreme depths, is the result of multiple selective pressures operating on 

an evolutionary timescale.  The extent that these selective pressures have impacted the 

evolution of social systems in cetaceans is not fully known; however, the importance of 

these systems to the survivorship of a species is well known (Connor 2000).  As might be 

expected from the diversity of habitats being exploited, cetaceans exhibit a variety of 

different social patterns, ranging from the solitary nature of the humpback whale, 

Megaptera novaeangliae (Clapham 2000), to the stable matrilineal pods observed in the 

killer whale, Orcinus orca (Bigg et al. 1990). 

  From a taxonomic perspective, social system generalities within the order 

Cetacea can be grouped according to the two suborders: Mysticeti and Odontoceti.  With 

some notable exceptions, the social organizations of the suborder Mysticeti (baleen 

whales) are characterized by largely solitary animals lacking both long-term associations 

between individuals and stable cohesive groups.  The mysticetes are composed of many 

migratory species that form loose affiliations on breeding and feeding grounds normally 
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lasting on the order of hours to days (Clapham 2000).  The longest observed bond is the 

mother-calf association (Clapham et al. 1993), and calves are known to have little contact 

once they disperse from their mothers after weaning (Baker et al. 1987). 

 By contrast, the suborder Odontoceti (toothed whales) is characterized by group 

living and a variety of complex social relationships (Connor 2000).  Examples of these 

social relationships include the fission-fusion societies found in several delphinid species 

including the bottlenose dolphin, Tursiops spp., in which individuals associate in small, 

dynamic groups that change in composition over a period of hours or days (Würsig & 

Würsig 1977, Wells 1986, Connor et al. 2000).  Strong long-term bonds may also exist 

within fission-fusion societies, such as stable male-male bonds documented in bottlenose 

dolphins from Sarasota Bay, Florida (Wells et al.1987, Wells 1991) and Shark Bay, 

Australia (Smolker et al. 1992).    

In contrast to fission-fusion societies, several odontocete species form long-term 

associations within stable social groups.  For example, the sperm whale, Physeter 

macrocephalus, forms stable matrilineal groups termed “family units” composed of adult 

females and their female offspring, with males dispersing from the natal group and roving 

singly between groups of females (Whitehead & Weilgart 2000).  Male sperm whales 

leave the natal group before reaching sexual maturity and often associate with other male 

cohorts in “bachelor schools” before moving into higher latitudes and adopting a more 

solitary existence (Best 1979, Whitehead et al. 1997).   

In the most extreme example of group living, several populations of killer whales 

in the coastal eastern North Pacific exhibit yet another type of social organization, natal 

group philopatry, in which individuals are organized into multigenerational matrilineal 
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pods with dispersal of neither male nor female offspring (Bigg et al. 1990).  Such an 

organization is thought to be unique to killer whales among mammalian species (with the 

possible exception of pilot whales, Globicephala spp.), and is likely a result of selective 

pressures promoting a mutually beneficial group structure (Palmeirim & Rodrigues 1995, 

Baird 2000, Connor 2000).  Extensive research on these populations has revealed a 

hierarchical social structure composed of related matrilines with differing degrees of 

association (Bigg et al. 1990).  The fundamental social assemblage, the intra-pod group, 

is a single (often multigenerational) matriline consisting of an adult female and her male 

and female offspring (Bigg et al. 1990) where individuals are generally thought not to 

separate from the group for more than a few hours (Baird 2000).  Intra-pod groups range 

from two to nine individuals (mean=4) and one to four generations (mean=3) (Bigg et al. 

1990, Baird 2000).  Multiple intra-pod groups or matrilines traveling in close association 

for more than 95% of the time are termed sub-pods, and sub-pods (1-11matrilines, 

mean=2) associating more than 50% of the time are collectively termed a pod (1-3sub-

pods, mean=2).   

Groups 

Defining a “group” in biologically meaningful terms is essential to studies of 

sociobiology and ecology; however, extreme species diversity hampers the development 

of any comprehensive definition.  In a review of the definitions of “group” used in a 

range of studies, Krause & Ruxton (2002) found little consensus among essential 

attributes beyond that of spatio-temporal proximity, a condition that allows for possible 

communication, interaction and exchange of information between individuals.  Following 

this definition, groups can exist on broad spatial scales where individuals do not receive 
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the benefits from being in close proximity to other individuals.  Krause & Ruxton (2002) 

therefore distinguished “social groups” as groups where social interaction was a key 

component in grouping behavior, as opposed to simple co-occurrence related to abundant 

resources or favorable habitat.  Connor (2000) noted also that “only mutualistic group 

formation promotes the formation of social bonds.”  Similar distinctions were made by 

Norris & Schilt (1988) referring to social and non-social aggregations as grouping 

behavior influenced by group attraction (social aggregations) versus “physical or biotic” 

factors (non-social aggregations).  Whitehead (2008) also used spatio-temporal proximity 

as a defining characteristic of “groups” (with the added condition that the majority of 

interactions would take place therein), but distinguished between social and nonsocial 

groups by referring to social groups simply as “groups” and nonsocial groups as 

aggregations. 

Group living in cetaceans 

The evolution of group living in certain cetacean species has been the subject of 

intense study; the development of social bonds generally is thought to represent the 

relative cost-benefit balance specific to local ecological conditions (reviewed by 

Trillmich 2009).  Defense against predation, increased rate of resource acquisition, and 

improved survivorship of young are all thought to be driving forces in the evolution of 

group formation and relative stability of groups through time (Krause & Ruxton 2002).  

Norris & Schilt (1988) reasoned that for organisms living in an environment where 

predators can attack from three dimensions, predation would be the most influential 

factor in promoting group formation (see also Connor (2000)).  Living in groups is 

particularly beneficial in species in which predators have the size advantage, as is the 
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case with many odontocetes and with mysticete calves.  For larger cetaceans where the 

main predation risk is not to the adult but to the calf; mother-calf pairs may persist for the 

first year or two following parturition in mysticetes, presumably to increase survivorship 

of the calf (Clapham et al. 1993).  Large odontocetes such as the sperm whale appear to 

have developed an evolutionary response to threats of predation on the calves and 

juveniles in the group by utilizing members of the group termed “babysitters” that remain 

at the surface with younger individuals not yet able to dive to depth while the mothers 

and other adults go on deep foraging dives (Whitehead 1996).  Given the low 

reproductive rate found in sperm whales, Whitehead & Weilgart (2000) suggested that 

cooperative defense against predators may be essential to calf survivorship and an 

evolutionary driving force in the formation of stable family units (Whitehead 1996). 

While predator avoidance thus generally favors the formation of larger groups in 

smaller odontocetes (i.e., by using the “dilution effect” or “confusion effect” to reduce 

the probability that an individual is targeted or that the predator will be able to focus in 

on a particular group member (Krause & Ruxton 2002, Trillmich 2009)), group size is 

much more variable with respect to foraging.  For example, delphinids such as dusky 

dolphins (Lagenorhynchus obscurus) benefit from cooperatively herding fish into easily 

accessible areas (Würsig & Würsig 1979) while mammal-eating killer whales off the 

west coast of the United States maintain intermediate group membership levels to ensure 

both the most efficient capture of prey and the least amount of intra-group competition 

(Baird & Dill 1996).  Dispersal of adult male sperm whales from the natal group to 

higher latitudes is primarily thought to decrease foraging competition, thus returning to 

warmer waters to breed may be energetically costly and result in decreased foraging 
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success, and is not undertaken until males are roughly twice the age they were when they 

reached sexual maturity (Best 1979, Whitehead & Weilgart 2000). 

In contrast, while odontocetes benefit from group cooperation when pursuing 

high-speed prey such as schooling fish or other marine mammals, mysticetes generally 

exploit unpredictable and patchily distributed prey easily secured and consumed entirely 

by a single individual.  The nature and abundance of prey as a predictor of group 

formation and group size is also evident in feeding aggregations seen in certain 

populations of mysticete humpback whales where individuals will converge to 

cooperatively hunt a school of fish before dispersing after the feeding event (Clapham 

2000).  Indeed, Clapham (2000) cited several studies that indicated coordinated behavior 

corresponded to schooling prey, such as herring, and was less common with slow-moving 

prey.  Clapham et al. (1993) also noted that humpback whale group size was positively 

correlated with the prey school size. 

As mentioned above, living in groups also has several disadvantages, such as 

increased resource competition, risk of inbreeding and increased risk of acquiring 

pathogens, such as morbillivirus, the most pathogenic virus seen in cetaceans (reviewed 

by Bellière et al. 2010).  It would therefore not be surprising that groups would have a 

membership threshold above which the cost-benefit ratio shifts and associations become 

unstable (Krause & Ruxton 2002, Trillmich 2009).  The subject of inbreeding avoidance 

(thought to be maintained by sex-biased dispersal from the natal group (Greenwood 

1980, Connor 2000)), is particularly relevant to fish-eating killer whales in the coastal 

eastern North Pacific, where neither sex disperses from the natal group.  Baird (2000) and 

Connor (2000) noted that potential costs to remaining in the natal group such as 
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decreased reproductive opportunities and increased competition for food were likely 

minimized due to wide-spread movements and low locomotion costs, facilitating frequent 

opportunities to interact with other pods.  Baird (2000) also suggested that both males 

and females may benefit from increased inclusive fitness related to prey acquisition, 

group defense and care of related calves.  

Residency, site fidelity, and habitat usage  

Patterns of residency and site fidelity are often indicative of the ecology of a 

population; evidence of repeated sightings in the same area can be used to establish core 

ranges of individuals and reveal the importance of a particular habitat.  While residency 

is generally defined based on the amount of time spent in a predefined area (Wells & 

Scott 1990), parameters used to define residency in cetacean field studies vary widely and 

are often influenced by the local geography of the area and access to the study 

population.  Easily accessible study areas such as coastal waters and embayments, which 

naturally lend themselves to more focused and intensive field studies, tend to adopt 

stricter requirements for residency than offshore or open-ocean studies.  Möller et al. 

(2002) defined individual bottlenose dolphins in Jervis Bay and Port Stephens Bay, 

Australia as resident, transient or occasional visitor based on sighting frequency and 

presence across seasons; residents were defined as individuals sighted in ≥10% of 

surveys and in multiple seasons, occasional visitors were individuals seen in <10% of 

surveys but in multiple seasons and transients were essentially occasional visitors seen in 

a single season.  A study examining the degree of residency for botos (also known as 

Amazon river dolphins, Inia geoffrensis) in the Mamirauá Lake system considered 

individuals seen in ≥seven months/year and in ≥1-3years as resident to the area, with 
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permanent residents seen in all years of the study and partial residents seen in less than 

three years; individuals that did not meet the residency criteria were termed nonresidents 

(Martin & da Silva 2004).  Seasonal residency has been described for several large 

migratory whale species (e.g., Herman & Antinoja 1977) but operational definitions of 

residency for presumably non-migratory open-ocean delphinids are somewhat lacking.   

Residency, as defined in open-ocean systems, is more tenuous, as protected areas 

offering predictable and highly concentrated prey generally thought to support resident 

communities are likely not available (see Baird et al. 2008a); instead, studies of open-

ocean species often rely on site fidelity, the tendency for individuals to return to or 

remain in the same area over time (Baird et al. 2008a).  Given the relative size of areas 

typically surveyed during open-ocean studies (e.g., 5,000 km
2
 off the island of Hawai„i in 

McSweeney et al. (2007) versus 225 km
2
 in the Mamirauá Lake system in Martin & da 

Silva (2004)), encounter rates would be expected to be lower in the open-ocean system 

based on the expanse of area being covered.  Thus, residency requirements should be 

adjusted accordingly.   

A high degree of site fidelity was found for Risso‟s dolphins (Grampus griseus) 

off the southern coast of Picos Island, Azores, using photo-identification (Hartman et al. 

2008, 2009); residency to the study area (estimated from Figure 1 in Hartman et al. 

(2009) to be ~280 km
2
) was measured using seasonal presence in the area (see below).  

While Risso‟s dolphins typically inhabit deep, offshore waters, the bathymetry off Picos 

Island (similar to that off the island of Hawai„i) is characterized by steep submarine 

canyons, affording the opportunity to encounter deep-water species in close proximity to 

the shoreline (Hartman et al. 2008).  As survey effort varied seasonally, residency 
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classification for Risso‟s dolphins was determined by seasonal and yearly presence over 

11 seasons from May 2004 to January 2007 (Hartman et al. 2009).  Over the course of 

the study, residents were defined as individuals sighted in ≥3 years and 4-11 seasons, 

partial residents were those sighted in 2 years and >1-3 seasons and non-residents were 

sighted in a single year and season (Hartman et al. 2009).  Such variation in residency 

criteria between near-shore species (e.g., Möller et al. 2002) and open-ocean delphinids 

(Hartman et al. 2008, 2009) preclude direct comparisons between populations.  

Photo-identification 

The utilization of photo-identification in behavioral and population studies has 

become integral to the field of cetacean research (Hammond et al.1990).  Reliable and 

repeated identification of individuals can provide pivotal information on movement 

patterns, group stability and association patterns over time (Würsig & Würsig 1977).  The 

extensive life histories of killer whales in the coastal eastern North Pacific, for example, 

were gathered primarily with the aid of photo-identification techniques (Olesiuk et al. 

1990).  Although the natural markings used to identify individuals varies among cetacean 

species, the method is common to the order Cetacea and has become one of the most 

important tools cetacean biologists have in conducting longitudinal studies (Wells 1991).  

Long-term studies on individuals or populations are essential for species with long life 

spans (such as cetaceans) if life history and other temporal data are to be obtained (Mann 

2000).  Photo-identification also provides the opportunity to integrate behavioral studies 

in the field, such as focal and group follows, with individual life histories, a prospect that 

was unavailable prior to its implementation (Wells 1991).  Finally, behavioral data can 

greatly assist with assessing anthropogenic impacts, either through direct observation or 
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indirectly through analysis of temporal changes in movement or behavioral pattern 

(Hammond et al. 1990).       

Pilot whales 

The Globicephalinae 

The pilot whales, genus Globicephala, belong to the most speciose family within 

the suborder Odontoceti, the Delphinidae.  Two similar species comprise the 

Globicephala: the short-finned pilot whale, Globicephala macrorhynchus (Gray 1846) 

and the long-finned pilot whale, Globicephala melas (Traill 1809), the latter of which has 

three recognized subspecies based on geographic distribution (Bernard & Reilly 1999).  

However, based on shared haplotypes, Oremus (2008) has suggested long-finned pilot 

whale sub-species should be revised. 

The differences that exist between the two Globicephala species are subtle to the 

extent that they cannot, with high reliability, be distinguished at sea.  Pilot whales are 

medium-sized odontocetes, with maximum recorded lengths of long-finned pilot whales 

being 6.3m in males and 4.7m in females, and 7.3m in males and 5.1m in females for 

short-finned pilot whales (Reeves et al. 2002).  As the common names suggest, 

evaluation of the flipper length is often necessary for species identification, as is 

examination of the number of paired-teeth (Reeves et al. 2002). However, even external 

morphological identification can prove subjective due to overlapping characteristics; 

analysis of cranial morphology or genetic testing may be required for a definitive 

identification.  Fortunately, as close visual examination is not always feasible in the field, 

geographical distribution is considered to be a reliable indicator of species when the two 

do not overlap (Reeves et al. 2002). 
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Short-finned pilot whales have a pantropical and warm temperate distribution 

with a southern boundary limit around 25°S and northern limits around New Jersey and 

the central Bay of Biscay in the Atlantic Ocean and Hokkaido (Japan) and Vancouver 

Island (Canada) in the Pacific Ocean (Reeves et al. 2002).  The distribution of long-

finned pilot whales is largely complementary to that of short-finned pilot whales; long-

finned pilot whales are found in cool temperate to subpolar waters with a circumpolar 

distribution in the Southern Hemisphere and a range in the North Atlantic Ocean between 

45° and 50°N, including the Bay of Biscay and the Mediterranean Sea.  It is at the 

southern edge of the North Atlantic distribution of long-finned pilot whales and the 

northern edge for that of short-finned pilot whales that species overlap occurs, and 

identification becomes difficult in the northern hemisphere (see Figure 1). 

 

Figure 1. Geographic distribution of long-finned and short-finned pilot whales.  Dark 

gray areas indicate the range of the long-finned pilot whale, light gray areas indicate the 

range of the short-finned pilot whale and hatched areas indicate overlapping range.  

Illustration by Uko Gorter. 
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Residency and site fidelity in pilot whales        

Pilot whales have a reputation for being abundant throughout their range (Olson 

2009); short-finned pilot whale abundance was most recently estimated at 160,200 

(CV=0.14) for the Eastern Tropical Pacific (Wade & Gerrodette 1993) and 8,846 

(CV=0.49) for the entire Exclusive Economic Zone (EEZ) surrounding the main 

Hawaiian Islands (Barlow 2006).  Barlow (2006) also reported that short-finned pilot 

whales were the most commonly sighted species during a shipboard survey of the 

Hawaiian Islands EEZ and were estimated to be among the most abundant delphinid 

species in these waters.  Short-finned pilot whales were also consistently among the most 

frequently sighted delphinids in small-vessel surveys conducted off the island of Hawai„i 

(Baird et al. 2008c, Baird, unpublished) but were less frequently seen in similar surveys 

off Kaua„i and Ni„ihau (Baird et al. 2006).  However, survey effort off Kaua„i and 

Ni„ihau only partially overlapped with the habitat of short-finned pilot whales due to less 

favorable sea conditions (47% of effort was confined to <500m depth); thus, the shallow 

waters surveyed are likely responsible for the depressed sighting rate. Long-finned pilot 

whales were reportedly one of the most frequently encountered species of cetacean in the 

Strait of Gibraltar (Roussel 1999).   

Few resident populations of pilot whales have been documented.  Using photo-

identification, a year-round resident population of ~372 short-finned pilot whales has 

been described off the island of Tenerife (Heimlich-Boran 1993), and a population of 

~216 long-finned pilot whales in the Strait of Gibraltar has been described as “seasonally 

resident” by Verborgh et al. (2009) and “resident year round” by de Stephanis et al. 

(2008a, b).  Seasonal site fidelity was documented in short-finned pilot whales both off 
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the island of Hawai„i and off Santa Catalina Island, California (Shane & McSweeney 

1990).  On-going research off California was unexpectedly limited by a severe El Niño 

(ENSO) event that resulted in a substantial decrease of short-finned pilot whale sightings, 

likely due to a decrease in abundance of market squid (Loligo opalescens), their primary 

prey (Shane & McSweeney 1990).  Based on the low re-sighting frequency of individuals 

off northern Nova Scotia, Ottensmeyer & Whitehead (2003) reported that long-finned 

pilot whales were not resident to the area. 

Depth distribution and movements in relation to prey 

Pilot whales generally are known to consume 19 species of neritic and oceanic 

cephalopod species (reviewed in Clarke 1996).  Seasonal inshore-offshore movements of 

long-finned pilot whales have been closely tied to that of their primary prey, squid; 

whales off Newfoundland were documented moving into bays just ahead of the arrival of 

shortfin squid (Illex illecebrosus) and leaving just before the exodus of squid from the 

area (Abend & Smith 1999).  Further, long-finned pilot whales are absent off 

Newfoundland in the winter season when squid are not present and have been 

documented in reduced numbers or absent in years when squid abundance is reduced 

(reviewed in Abend & Smith 1999).  The seasonal presence of long-finned pilot whales 

in eastern Canadian waters illustrates the influence prey abundance has on predator 

movement patterns and suggests that primary prey in areas where resident populations 

have been documented could be both abundant and stable.  Long-finned pilot whales 

have been similarly recorded favoring depths occupied by pelagic cephalopods in the 

Alboran Sea (Cañadas & Sagarminaga 2000) and demonstrated seasonal preference for 

deep water with steep bathymetry in the Strait of Gibraltar during summer months 
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followed by a more even distribution in fall and winter months (de Stephanis et al. 2008a, 

b).   

Defining groups – comparisons to other studies 

In previous photo-identification studies of free-ranging pilot whales, researchers 

have defined encounters in a variety of ways; a study of long-finned pilot whales in St. 

Lawrence Bay, Nova Scotia required that groups be separated by a 200 m boundary 

(Ottensmeyer & Whitehead 2003), while a study on the same species in the 

Mediterranean used a 1,000m chain-rule where individuals separated by a distance less 

than 1,000 m were considered members of the same group (Cañadas & Sagarminaga 

2000).   Acknowledging that the 200 m delineation was somewhat arbitrary and 

potentially negatively-biased toward small or discrete groups, Ottensmeyer & Whitehead 

(2003) noted that large groups were infrequently encountered and cited the advantage of 

being able to visually track all individuals within the boundary.  The decision by Cañadas 

& Sagarminaga (2000) to use a 1,000 m chain rule was based on observations in the field, 

similar to those in the present study, of cohesive as well as sparsely distributed 

individuals; however a more recent study on long-finned pilot whales in the Strait of 

Gibraltar by de Stephanis et al. (2008b) only considered whales separated by an inter-

individual length ≤5 m to be associated.   

In a study of short-finned pilot whale social structure Heimlich-Boran (1993) 

initially considered all individuals within 250m of one another to be part of the same 

group (leaving encounters with sparsely distributed individuals undefined); however, 

group designations were revised such that any groups containing the same individual 

were collapsed into a common sighting for the day.  Preliminary photo-identification 
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studies on short-finned pilot whales by Shane & McSweeney (1990) and Miyashita et al. 

(1990) did not provide formal definitions for groups, though the mention of “cohesive 

pods” suggested individuals in close proximity were considered grouped.  Such variation 

in group delineation reflects differing field conditions and makes cross-study 

comparisons difficult; however, useful inferences may still be drawn if common analyses 

are used.   

Social structure 

The pilot whale was one of the odontocete species most exploited by the whaling 

industry and long-finned pilot whales are still taken regularly in traditional drive fisheries 

in the Faroe Islands (Bloch et al. 1993).  Considerable research has been conducted on 

long-finned pilot whales in the North Atlantic due to the wealth of specimens generated 

by the whaling practices (Amos et al. 1991, 1993a, b, Fullard et al. 2000).  Results of 

genetic analysis (nuclear DNA „fingerprints‟ and microsatellites obtained from sampling 

each individual killed within a group or “grind”) have revealed a multigenerational group 

composition consisting of maternally related males and females that rarely if ever, 

interbreed (Amos et al. 1991, 1993a, b, Fullard et al. 2000).  Based on the results, Amos 

et al. (1993) and Fullard et al. (2000) suggested that grinds represent persistent familial 

units similar to that of killer whales in the coastal eastern North Pacific (Bigg et al. 

1990).  Additional studies of groups taken in drive fisheries, such as those examining 

trace metals (Caurant et al. 1993, 1994), organochlorine concentrations (Aguilar et al. 

1993), protein polymorphisms (Andersen 1988, 1993) and intestinal helminth 

communities (Balbuena & Raga 1994) have also demonstrated inter-group differences 

consistent with longitudinally stable behavioral groups.  However, the limitations of 
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using a cross-sectional view of group composition to describe longitudinal aspects of 

pilot whale social structure have raised concerns (Ottensmeyer & Whitehead 2003, 

Oremus 2008), and it has been suggested that the research could benefit from the addition 

of mitochondrial (mtDNA) analysis (Oremus 2008).   

Oremus (2008) analyzed mtDNA and microsatellites from samples of long-finned 

pilot whales taken from mass stranding events around New Zealand to help address 

whether groups observed at sea represented longitudinally stable “extended matrilineal 

groups” as suggested by Amos et al. (1993) and Fullard et al. (2000), or whether they 

represented ephemeral associations between groups of smaller, stable matrilines as 

suggested by Ottensmeyer & Whitehead (2003) (see discussion below).  In contrast to the 

“extended matrilineal groups” reported in the Faroese drive fisheries studies, results of 

the mass stranding analysis indicated that stranded groups were composed of multiple 

unrelated matrilines, suggesting a complimentary study on the Faroese drive fishery 

would be beneficial to resolve this discrepancy.  Results from the mass stranding analysis 

did reveal some similarities to the Faroese studies; sexually mature male and female 

offspring were identified within stranded groups and breeding within the group was 

determined to be rare (Oremus 2008).  Evidence of long-finned pilot whale groups 

containing multiple unrelated matrilines where individuals demonstrate some degree of 

natal group philopatry prompted Oremus (2008) to suggest that long-finned pilot whales 

have a social structure distinct from sperm whales or the coastal eastern North Pacific 

population of killer whales. 

Genetic analyses on short-finned pilot whales culled off the Japanese coast were 

conducted by Kasuya et al. (1988) and were found to contain two discrete forms: a 
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“northern form” and a “southern form,” also distinguished by phenotypic and 

morphologic differences in body size and pigmentation.  Wada (1988) identified 

significant differences in gene frequencies between the two forms but further analysis 

indicated that the forms were genetically-isolated stocks operating at the inter-population 

level. 

Limitations of genetic analysis have been complemented by photo-identification 

studies on long-finned pilot whales off Nova Scotia (Ottensmeyer & Whitehead 2003) 

and in the Mediterranean (de Stephanis et al. 2008b), and on short-finned pilot whales in 

Hawai„i (Shane & McSweeney 1990) and the Canary Islands (Heimlich-Boran 1993).  

Ottensmeyer & Whitehead‟s (2003) study described the social structure of the long-

finned pilot whales in St. Lawrence Bay, Nova Scotia (a study area of 85 km
2
) as a blend 

of short-term associates and constant companions; many of the associations observed in 

the field were determined to be ephemeral and would degrade over the period of a week, 

with a subset of individuals forming long-term associations.  Social units of long-finned 

pilot whales consisting of “key individuals,” and their “constant companions” were 

constructed following the method outlined in Christal et al. (1998), in which individuals 

seen on at least four occasions with each sighting separated by a minimum of 30 days 

were selected as key individuals and constant companions were those that had similar 

sighting histories (seen on the same day as the key individual on at least three occasions, 

separated by a minimum of 30 days).  Of the 322 distinctive individuals documented 

during the study, less than half (41.0%) were re-sighted more than once over the two-year 

period and the majority of those re-sightings (72.4%) occurred in only one season.  While 

the low re-sighting rate suggested the study population was not resident to the area, it 
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could also suggest that the population was quite large and that sampling effort was 

insufficient to get good coverage of all individuals.  The low re-sighting rate also made 

obtaining detailed information on social structure difficult; only 35 individuals were seen 

on more than four occasions and were included in many of the analyses.  Preferential 

associations were found among the 35 individuals seen on more than four occasions and 

92% were found in association with at least one other individual more than 50% of the 

time.  Seven behavioral units were defined ranging from one to six distinctive 

individuals; an average unit size of eight stable companions was estimated after adjusting 

for the presence of less distinctive individuals.          

Although Ottensmeyer & Whitehead (2003) provided evidence for associations 

over a period of two years, the individuals represented a subset of those termed “short-

term associates,” and existed in much smaller units than the extended matrilineal groups 

proposed in the Faroe Islands using genetic analysis (Amos et al. 1991, 1993b).  The fact 

that the average unit size for stable associates in St. Lawrence Bay was less than half of 

the average group size encountered in the field supports the assertion that encountered 

groups are themselves ephemeral but contain smaller stable social units.  However, the 

nature of photo-identification requires a longitudinal data set in order to make in-depth 

population inferences, and from Ottensmeyer & Whitehead‟s (2003) conclusion it is 

reasonable to suggest their study would have benefited from a longer time frame. 

Heimlich-Boran (1993) conducted a 22-month photo-identification study on 

short-finned pilot whales in the Canary Islands archipelago, off the island of Tenerife.  

Over the course of the study, Heimlich-Boran (1993) identified 495 individuals and 

delineated 46 “pods” using a distance coefficient to measure co-occurrence.  Heimlich-
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Boran (1993) was able to distinguish differing patterns of occurrence among individuals 

which he termed residents and visitors.  Visitors were classified as individuals seen on a 

single occasion and in the presence of individuals that had also not been documented 

previously; residents therefore referred to any individual that did not fit the criteria of 

visitor.  Analyses were performed to ensure that those labeled visitors had a probability 

of being re-sighted equal to that of residents, and that the distinction between groups was 

not artificial or a result of sampling error.   

Resident groups demonstrating preferential associations throughout the study 

period were termed “pods” and were composed of individuals of mixed age and sex 

(Heimlich-Boran 1993).  Association preferences differed depending on individuals 

present in the area; within their own pods, females considered to be “mothers” based on 

calf presence most strongly associated with other “mothers” and associated the least with 

adult males; however, on occasions during which several pods were observed traveling 

together, “mothers” most strongly associated with adult males from neighboring pods 

(Heimlich-Boran 1993).  The strongest associations observed both within pods and 

among neighboring pods were among adult males, suggesting that adult males form the 

most consistent associations.  Heimlich-Boran (1993) used the data from this study to 

suggest that males remain in their natal pods while seeking mating opportunities outside 

of the natal group.  

Finally, although several studies have employed the term “pods” in reference to 

pilot whales (e.g., Amos et al. 1991, Heimlich-Boran 1993), Oremus (2008) cautioned 

against its application.  Originally coined by Bigg et al. (1990) to designate 

longitudinally stable groups of killer whales in the coastal eastern North Pacific, the term 
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“pod” implies a specific type of social structure which has not been fully resolved in pilot 

whales.  Ottensmeyer & Whitehead (2003) have elected to call stable groups of long-

finned pilot whales defined using shared sighting histories “units”, and this study follows 

that nomenclature. 

The Hawaiian Islands 

The Hawaiian archipelago is situated in the central tropical Pacific Ocean and is 

one of the most isolated island chains in the world.  It is composed of eight main islands 

and a variety of atolls, which are smaller uninhabited islands and reefs that are commonly 

referred to as the Northwestern Hawaiian Islands (Figure 2.1).  The archipelago is a 

popular tourist destination and waterways around the main islands often are congested 

with commercial and private vessel traffic.  Hawai„i also is the site of annual naval 

warfare exercises and naval sonar testing.  The waters around the main Hawaiian Islands 

are home to 24 documented cetacean species, including the short-finned pilot whale that 

has been documented off each of the main islands (Barlow 2006).   

Cetaceans exist in a dynamic underwater environment that lacks the traditional 

physical barriers used in terrestrial systems to delineate populations; consequently, 

geopolitical boundaries often serve as proxies for defining populations (Baird et al. 

2009).  However, research on well-studied populations such as common bottlenose 

dolphins (Tursiops truncatus) and lesser-known species such as false killer whales 

(Pseudorca crassidens) has shown substantial differences in habitat usage, ecology and 

social structure, suggesting research from one population is not necessary indicative of 

another (Wells 1986, Baird et al. 2008b).   

With the recent exceptions of false killer whales, spinner dolphins and common 
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bottlenose dolphins, one stock is currently recognized for each species found within the 

Hawaiian EEZ, a management boundary that extends 200nm from shore and encircles the 

Hawaiian Islands (Carretta et al. 2011).  However, photo-identification and genetic 

analyses of several species around the main Hawaiian Islands indicates current stock 

designations may not be appropriate (Baird et al. 2008a, b, 2009, McSweeney et al. 2009, 

Aschettino et al. 2011, Courbis 2011).  A multi-island comparison of photo-identified 

common bottlenose dolphins showed fidelity to individual islands and no inter-island 

movements, suggesting the existence of multiple resident populations (Baird et al. 2009) 

and this was confirmed with genetic analyses (Martien et al. 2011).  Photographic 

analysis of population structure in melon-headed whales (Peponocephala electra) 

provided evidence for two populations in Hawaiian waters that differ in ecology and 

habitat use: a small resident population off the island of Hawai„i occupying shallow 

waters, and a larger non-resident population found in deeper waters (Aschettino et al. 

2011).   

For management purposes, Stock Assessment Reports (SARs) prepared by the 

National Marine Fisheries Service (NMFS) have divided short-finned pilot whales into 

two stocks within the Pacific U.S. EEZ; those in Hawaiian waters and those off the west 

coast of the United States (Washington, California and Oregon) (Carretta et al. 2011).  

The Potential Biological Removal (PBR) is defined by NMFS as the maximum number 

of individuals that can be sustainably removed from a stock; this level was calculated at 

52 individuals for the short-finned pilot whale stock in Hawai„i, which is less than the 

estimated mortality and serious injury rate of 0.7 individuals per year (Carretta et al. 

2011). 
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As mentioned earlier, the short-finned pilot whale is thought to exhibit natal 

group philopatry, a social system that could effectively divide the population into discrete 

groups.  Short-finned pilot whales within the Hawaiian EEZ are currently are recognized 

as a single stock; however, the demonstration of population substructure could greatly 

influence future management decisions.  Consequently, further research is needed on this 

population for both conservation risk assessment and to establish basic ecology needed to 

evaluate future threats.  The focus of my research was therefore to examine association 

patterns, site fidelity and residency for short-finned pilot whales off the island of Hawai„i 

that could be used to inform the population structure of this species within the main 

Hawaiian Islands.  My results and conclusions are presented in Chapter 2 in manuscript 

form. 
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Chapter 2.  High site fidelity, strong associations and long-term bonds: short-finned 

pilot whales off the island of Hawai‘i 

Introduction 

Social structure can influence the ecology, genetics and population biology of a 

species (Wilson 1975, Whitehead 2008b), thus understanding social organization in 

cetaceans has important implications for management and conservation.  Bigg (1982) 

used associations of photo-identified individuals to define killer whale (Orcinus orca) 

populations in the coastal eastern North Pacific, and Wells (1986) used patterns of 

association among photo-identified common bottlenose dolphins (Tursiops truncatus) 

near Sarasota, Florida to describe a discrete inshore community within the larger Florida 

population (see also Duffield and Wells 1991, Sellas et al. 2005), suggesting social 

analyses can be used to define biologically meaningful population units.  Similarly, 

association patterns and genetic analysis revealed two demographically isolated 

populations of false killer whales (Pseudorca crassidens) around the main Hawaiian 

Islands, resulting in the division of the Hawai„i stock into a pelagic stock and an insular 

stock, each with specific management considerations (Chivers et al. 2007, Baird et al. 

2008b, Carretta et al. 2011).  

Pilot whales (Globicephala spp.) are thought to exhibit natal group philopatry, a 

type of social structure documented in killer whales in the coastal eastern North Pacific 

(Bigg et al. 1990) and characterized by a lack of dispersal of male and female offspring 

from the natal group (Heimlich-Boran 1993).  The extreme cohesiveness characteristic of 

this type of social structure has been suggested as a partial explanation for the frequency 

of pilot whale mass stranding events, which commonly involve groups of largely healthy 
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individuals (Olson 2009).  Indeed, these characteristic social bonds have been exploited 

by drive fisheries in the Faroe Islands as an efficient means of herding large groups or 

“grinds” of long-finned pilot whales (G. melas) to shore where they are killed (Bloch et 

al. 1993).  As with killer whales in the coastal eastern North Pacific, genetic analysis of 

relatedness within grinds has suggested a multigenerational matrilineal group structure 

composed of both sexes, with little evidence of breeding occurring within the group 

(Amos et al. 1993a, Fullard et al. 2000); however, without knowledge of association 

patterns, limited inferences about long-term stability can be drawn.  

No long-term photo-identification studies exist for short-finned pilot whales (G. 

macrorhynchus); however a 22-month study off the island of Tenerife identified a year-

round resident population demonstrating persistent preferential associations (Heimlich-

Boran 1993).  Similarly, studies of long-finned pilot whales in the Strait of Gibraltar (de 

Stephanis et al. 2008b) and off Cape Breton Island, Nova Scotia (Ottensmeyer & 

Whitehead 2003) found subsets of the study population organized into stable, long-term 

groups demonstrating preferential associations, although dyads disassociating over a 

period of a few days were also identified in the Nova Scotia population.  Differing 

ecology of the two study populations might account for slight differences in observed 

social structure; long-finned pilot whales in the Strait of Gibraltar represent a year-round 

resident population (de Stephanis et al. 2008a, b) while those studied off Nova Scotia are 

thought to be part of an offshore population with little residency (although some seasonal 

fidelity) to the area (Ottensmeyer & Whitehead 2003).     

   The short-finned pilot whale has a ubiquitous presence around the main 

Hawaiian Islands; a 2002 ship line-transect survey listed pilot whales as one of the most 
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abundant and frequently encountered cetaceans within the Exclusive Economic Zone 

(EEZ) (Barlow 2006), and this species is consistently the most commonly encountered 

cetacean during small boat surveys (Baird et al. 2006).  However, despite year-round 

presence and relative accessibility from shore, little research has been published on this 

species in Hawai„i.  Preliminary studies suggest short-finned pilot whales in Hawai„i may 

be a genetically isolated island-associated population (Chivers et al. 2003) demonstrating 

a high degree of site fidelity and group cohesiveness (Shane & McSweeney 1990, Baird 

et al. 2006); however, there is no knowledge of whether social or genetic isolation exists 

among islands or island regions within the archipelago.  Research off the island of 

Hawai„i has demonstrated the existence of small resident populations of several other 

typically deep-water odontocetes, including pygmy killer whales (Feresa attenuata), 

rough-toothed dolphins (Steno bredanensis), and two species of beaked whales 

(McSweeney et al. 2007, Baird et al. 2008a, McSweeney et al. 2009), suggesting that 

there may be features off the island of Hawai„i that are ecologically important to deep-

water odontocetes and potentially favorable for the development of resident populations.   

In this study, I used repeated observations of photographically-identified 

individual short-finned pilot whales in Hawai„i to describe association patterns among 

individuals, following the framework developed by Hinde (1976), in which individual 

interactions are used to describe the “nature, quality and patterning of relationships” 

among individuals within a population. Short-finned pilot whales were photographically 

documented from 2003 through 2007 in Hawai„i as part of a long-term multi-species 

study on odontocete stock structure (e.g., Baird et al. 2008a, b).  This study uses long-

term photographic datasets from both directed research surveys and opportunistic 
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encounters to assess levels of site fidelity, residency and association patterns of short-

finned pilot whales, focusing particularly off the island of Hawai„i.  Only a single stock 

of this species is currently recognized in Hawai„i (Carretta et al. 2011); however, the 

demonstration of population substructure could greatly influence future management 

decisions.   
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Methods 

Field methods 

Study area 

Research was conducted in the main Hawaiian Islands from 2003 through 2007 as 

part of a long-term multi-species study of odontocete stock structure.  The study area 

consisted of the main Hawaiian Islands, ranging from the island of Hawai„i in the 

southeast to the islands of Kaua„i and Ni„ihau in the northeast.  The majority of the study 

was conducted in an area of approximately 2,500 km
2
 off the west side of the island of 

Hawai„i from May 2003 to August 2007, with additional effort off Lana„i, O„ahu, Ni„ihau 

and Kaua„i in 2003 and effort off Kaua„i in 2005 (Figure 2.1).   

Effort 

Research vessels used over the course of the study ranged in length from 5.8 to  

18 m; the majority of surveys were conducted using outboard-powered vessels from 6 to 

8.2 m in length.  Survey protocol remained consistent throughout the duration of the 

study and consisted mainly of surveys launched from port each morning; on select 

occasions larger vessels designed for offshore surveys extending to multiple days were 

used.  Regardless of vessel used, survey effort was nonsystematic and nonrandom, and 

tracklines followed were intended to maximize the probability of encountering 

odontocetes without duplication of previous tracklines.  Effort was made to cover as great 

an area and depth range as possible given constraints by sea conditions (effort primarily 

attempted to remain in conditions below Beaufort 4) and in the case of small vessel 

surveys, distance to shore.  During surveys the vessel transited at speeds from 15 to 30 

km/h while two to six observers scanned 360 degrees around the survey vessel to look for 
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cetaceans.  Vessel location was recorded automatically every five minutes to a global 

positioning system (GPS) on board the vessel and waypoints were used to record any 

important events (such as sightings) during the survey period.   

Wild Whale Research Foundation: opportunistic effort and encounters 

Prior to and concurrent with the multi-species odontocete study mentioned above, 

the Wild Whale Research Foundation (WWRF) based in Holualoa, Hawai„i has been 

opportunistically collecting photo-identification data on odontocetes off the west coast of 

Hawai„i Island since 1986.  Photographic data was collected in conjunction with whale 

watching trips on board the Lady Ann that generally operated in deeper water (>500 m) in 

the spring, summer and fall (end of March to end of December), and in shallower water 

(<500 m) in the winter months (January to the middle of March).  Winter excursions 

focused on humpback whale groups while excursions from April to November focused 

on short-finned pilot whale groups.  Photographic data taken from September 2004 to 

December 2007 was included in this study.  Sighting data was recorded on a cassette 

recorder in the field and transcribed to hard copy once on land, and more recently to an 

Excel file.  Once a group was sighted, the date and time of the encounter was recorded; 

location was recorded using a GPS when available, and details of the encounter including 

group size, and approximate age classes were also noted.   

Additional opportunistic photographs contributed by independent researchers off 

the islands of Kaua„i and O„ahu also were used in this study.   

Directed research encounters 

Once a short-finned pilot whale group was sighted, the research vessel would 

reduce speed in order to minimize disturbance.  Encounters (used synonymously with 
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“sightings” here) could be terminated due to inclement weather conditions, time of day, 

sighting of a higher-priority species or if all of the individuals within the group had been 

photographed. 

This study employed the “gambit of the group” methodology, a spatio-temporal 

designation stating that individuals within the same group are assumed to be associated 

(Whitehead & Dufault 1999); thus, the definition of “group” was of particular 

importance.  Based on initial visual observations off the island of Hawai„i of widely-

dispersed individuals believed to belong to the same group, an encounter definition using 

an operational 1,000 m chain-rule (where individuals separated by 1,000 m or less were 

considered to be members of the same group) was employed.  While likely a conservative 

measure of group membership that may contain additional outside individuals, the 1,000 

m chain-rule was designed to capture sparse groups as accurately as possible and avoid 

artificially sub-dividing large groups.  A chain-rule is frequently used in situations in 

which groups are not discrete or when group boundaries are somewhat ambiguous (e.g., 

Smolker et al. 1992).  Although it was not known whether all individuals within sparse 

groups defined using the 1,000 m chain-rule were behaviorally interacting, behaviors 

appeared coordinated among members of groups and acoustic communication at that 

distance was likely possible (Weilgart & Whitehead 1990). 

Photographic effort 

Attempts were made to equally photograph the right and left sides of all 

individuals present within an encounter, with the exception of tagged individuals, for 

which additional photos were taken for tag analysis purposes.  All photographs were 
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taken using SLR digital cameras with 200-400 mm lens; the number of photographers 

ranged from 1-4 for directed research, and there was one photographer for WWRF effort. 

 

Photo-identification 

Photo-identification protocol 

Following the protocol of Baird et al. (2008a), all photographically-documented 

encounters were analyzed for incorporation into an existing short-finned pilot whale 

photo-identification catalog for the main Hawaiian Islands.  Encounters were sorted 

visually by individual into folders using the unique pattern of nicks, notches and scars on 

the leading and the trailing edge of the dorsal fin.  Sorted individuals were assigned a 

temporary identification number (ID) and compared against the existing photo-

identification catalog to determine if the individuals had previously been documented.  

New individuals were assigned a new permanent sequential alphanumeric ID (e.g., 

HIGm####) in the catalog and those that were re-sightings were incorporated under their 

existing permanent ID.  All photographic sorting/matching was done visually using 

ACDSee 8.0 and 10 Photo Manager Software.   

Photographic encounters were processed using previously established protocols 

by Baird et al. (2008a, b) and McSweeney et al. (2009).  Photographic quality (PQ) of 

each individual in a given encounter was rated on a scale of 1-4 (1=poor, 2=fair, 3=good, 

4=excellent) using several criteria such as the focal clarity, size of animal in the frame, 

image contrast, and angle of dorsal fin in frame.  These qualitative criteria were equally 

weighted such that in order for a photograph to be considered “good” or “excellent” the 

image needed to be of good to excellent focal clarity, positioned squarely with respect to 
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the photographer, etc.  Similarly, the distinctiveness (Dist) of an individual from each 

encounter was also rated on a scale of 1-4 (1=not distinctive, 2=slightly distinctive, 

3=distinctive, 4=very distinctive) using criteria based on the number, size and shape of 

nicks, notches and scars on the leading and the trailing edge of the dorsal fin.  Individuals 

were evaluated on each of these criteria to determine an overall distinctiveness rating; 

however, in general, the number, size and pattern of notches increased with 

distinctiveness.  It should be noted that photo quality and individual distinctiveness 

ratings were determined independently, and effort was made to minimize bias from 

images of highly distinctive animals artificially increasing photo quality ratings, and for 

images of individuals of lower distinctiveness artificially lowering photo quality.   

Changes to the leading and trailing edge of the dorsal (such as the addition of new 

nicks or notches) were recorded for an individual each time they were observed and these 

mark changes were verified by another experienced matcher.   

Clean fins 

Individuals without identifying marks on their dorsal fins were not necessarily 

unidentifiable.  Ephemeral scarring such as cookie cutter shark (Isistius spp.) bites and 

tooth-rake marks, as well as overall dorsal fin shape, were occasionally used to re-sight 

individuals between encounters on a short temporal scale.  Juveniles, calves and neonates 

were also matched between encounters based on this secondary scarring and by close, 

constant association with a conspecific, usually thought to be the mother based on 

repeated observed associations.  However, although not previously documented in pilot 

whales, alloparental care has been observed in sperm whales (Whitehead 1996) and killer 

whales (Haenel 1986) (two species with social structures believed to be similar to that of 
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pilot whales), and thus cannot be discounted here.  Clean individuals were eliminated 

from the majority of analyses but were necessary to determine the proportion of marked 

animals in a given encounter.    

Age/Sex classification 

Without the aid of genetic analysis, it was not possible to confirm the sexes of any 

of the individuals observed; however, inferences about the age and sex of certain 

individuals were made based on several factors.  Pilot whales are sexually dimorphic, 

with adult males obtaining an asymptotic or maximum length of up to one meter greater 

than adult females.  Although the ratio of dorsal fin height to width (at the base of the 

dorsal) is not considered to be diagnostic of an adult male for long-finned pilot whales 

(Seargent 1962), it is thought that the thickening of the leading edge is characteristic of 

adult males and can be distinguished in the field (Heimlich-Boran 1993).  Thus, 

individuals exhibiting a substantial thickening of the dorsal fin were considered adult 

males.  Neonates, considered less than two months of age, were characterized by clearly 

visible fetal folds and an uneven “lumpy” appearance to the skin; a dorsal fin that was not 

yet erect but folded as it would have been in the womb was indicative of neonates less 

than a day or two old.  Young of the year were considered individuals that were less than 

half the length of an adult and that were in constant close association with the same larger 

individual, presumed to be the mother.  Similarly, calves and juveniles were considered 

individuals that were less than 2/3 and 3/4 the length of an adult, respectively; both were 

in consistent association with the same larger individual, again presumed to be the 

mother.  Adult females were determined from individuals that were in close, consistent 

association with the same individual thought to be a calf because of small size.  
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Individuals matching the length description for adult females but without younger 

individuals in close association were considered adults, and sub-adults were individuals 

slightly smaller than adults.  

All analyses presented here are restricted to distinctive or very distinctive 

individuals with good or excellent-quality photos unless otherwise specified. 

  

Data analysis 

Encounters 

In an effort to reduce the probability that an individual present during an 

encounter was not photographed, a coverage rating was assigned to each encounter.  

Using the protocol developed by Ottensmeyer & Whitehead (2003), encounters were 

assigned a coverage index based on the ratio of the number of photos taken during an 

encounter to group size (see Table 2.1 for encounter coverage ratings).  Restricting 

association analyses to encounters with a coverage index of two provides a more 

representative view of the individuals present within a group, and also allows for 

comparison between this study and other studies utilizing the same parameters (see 

Ottensmeyer & Whitehead 2003, de Stephanis et al. 2008b).  Encounters for which group 

size information was not available (e.g., certain WWRF and opportunistic encounters), 

the number of individuals identified was used as a proxy for group size in the calculation 

of coverage.  In order to determine the appropriateness of using the number of individuals 

as a proxy for group size, the coverage values for each method were compared for 

encounters for which both values existed.  Of 173 encounters, three encounters were 

given a coverage index of two using the proxy method when the actual coverage index 
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was zero, and in 13 encounters the proxy coverage index was increased by one higher 

than the actual coverage index, suggesting the proxy was not sufficiently conservative.  

Based on this discrepancy, the coverage index of the encounters using the proxy value 

was scaled from 0-3, with only those encounters with a coverage=3 included in the 

analysis.  However, in order to minimize confusion surrounding two separate coverage 

indices, an overall coverage index≥2 was used in all analyses to encompass encounters 

for both directed research with coverage≥2 and opportunistic encounters with 

coverage=3. 

Table 2.1. Coverage ratings for directed research and opportunistic encounters off the 

island of Hawai„i from 2003 through 2007.  Coverage ratings were assigned to provide a 

metric of how completely groups were sampled (Ottensmeyer & Whitehead 2003).     

Coverage Index (0-3) Description (directed research) Description (opportunistic) 

0 # Photos < grp size  # Photos < # indiv  

1 # Photos > 1x grp size < 2x grp size # Photos >1x # indiv < 2x # indiv 

2 # Photos > 2x grp size # Photos > 2x # indiv <3 x # indiv 

3 - # Photos > 3x # indiv 

Sampling period 

A sampling period is a temporal unit used to show how relationships change over 

time.  How a sampling period is defined has a direct impact on association patterns 

between individuals and thus, the perceived social structure of the population.  Unless 

otherwise specified, a sampling period of a day was used; all individuals documented 

during an encounter at least once during that day were assumed to be associated for the 

day.  A sampling period of a day has been used in studies of association patterns in 

several odontocete species, including long-finned pilot whales (Ottensmeyer & 

Whitehead 2003, de Stephanis et al. 2008b), killer whales (Ivkovich et al. 2009), spinner 

dolphins (Karczmarski et al. 2004) and common bottlenose dolphins (Lusseau et al. 
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2003), and was chosen following Whitehead (2008b), who noted that a sampling period 

should be long enough to allow individuals sufficient opportunity to interact but not long 

enough to allow the majority of the study population to interact.  Each encounter was 

assigned a “group code” for which group membership was defined as all individuals 

documented during an encounter.  This approach, termed the “gambit of the group,” 

assumes that individuals observed together are associating on some level rather than 

merely being concentrated in the same area, and is thus dependent on the definition of 

“group” to eliminate random co-occurrences (Whitehead & Dufault 1999).  Associations 

were defined using a symmetric 1:0 similarity matrix that simply states that if A is 

associated with B then B is associated with A (symmetric) and indicates whether the 

individuals are associated (1) or not (0).   

Distinctiveness and rate of mark change 

The proportion of the population that could be reliably identified between years 

using good or excellent-quality photographs was estimated within each encounter and 

averaged over all encounters as the ratio of distinct and very distinct individuals to all 

individuals regardless of distinctiveness (Equation 1).  This method follows previous 

studies of several cetacean species off Hawai„i (see Baird et al. 2008a, b, McSweeney et 

al. 2009, Aschettino et al. 2011).   

(# Dist ≥3, PQ ≥3)/(# Dist ≥1, PQ ≥3)          Equation 1 

This number is likely a conservative estimate of the true proportion of identifiable 

individuals since those classified as slightly distinctive (and even non-distinct) could 

often be identified between encounters, given good-quality photographs (see section on 

Clean fins).  As only distinctive and very distinctive individuals with good or excellent-
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quality photos were used in all analyses (unless otherwise specified), Equation 1 also 

provides an estimate of the proportion of the population NOT included in the analysis, 

allowing results to be scaled accordingly (e.g., group size increased by the percentage 

considered non-distinctive). 

The proportion of individuals that were re-sighted over the course of the study 

was calculated within each distinctiveness category (see section on Photo-identification 

protocol) by dividing the total number of individuals seen on more than one occasion by 

the total number of re-sightings.  Similarly, the mean number of re-sightings per 

individual within each distinctiveness category was calculated by dividing the total 

number of re-sightings by the total number of individuals. 

To determine the likelihood of misidentifying an individual due to a mark change, 

the rate at which mark changes occurred in the study population was calculated following 

previous studies of cetaceans off Hawai„i (Baird et al. 2008a, b, McSweeney et al. 2009, 

Aschettino et al. 2011).  As several mark-change events could have occurred between 

sightings, the rate of mark change was calculated using both the minimum number of 

mark changes (i.e., the total number of occasions on which mark changes were 

documented) and maximum number of mark changes (i.e., the total number of individual 

mark changes documented).  The rate of mark change was calculated by first summing 

the length of time between the first and last sighting of each individual across all 

individuals, and then dividing by the minimum and maximum number of mark changes.  

Rate of discovery of new individuals 

A discovery curve is a visual representation of the proportion of the population 

that has been documented and provides a reference for the completeness of a data set.  
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Discovery curves have been used in cetacean studies to inform residency (e.g., 

Karczmarski et al. 2004) and whether populations are open or closed to factors such as 

immigration, emigration, birth or mortality (Merriman et al. 2009).  A discovery curve 

was plotted for the cumulative number of individuals versus the cumulative number of 

identifications made (maximum of one per day to prevent pseudoreplication); the 

discovery curve was constructed using all available encounters, regardless of coverage 

index; however, only sightings of distinctive individuals with good-quality photos were 

used. 

Residency to the study area 

Potential residency to the study area was examined using individual sighting 

histories and social network analysis.  For the purposes of this study, individuals 

demonstrating a high degree of site fidelity to the study area were termed core residents 

and defined as those documented on at least five occasions in three or more years, while 

individuals that fell below this threshold (but that were seen more than once) were termed 

residents, and individuals seen on a single occasion were termed visitors.  While the 

criteria used to designate residency is somewhat arbitrary, it is meant to separate 

individuals that exhibited multi-year site fidelity to the area (core residents) from 

individuals with multiple sightings over a short temporal scale (residents).  Due to the 

conservative nature of the residency criteria, it is acknowledged that individuals assigned 

visitor status may also demonstrate some degree of site fidelity to the area; however, the 

size of the study area limited the inferences for residency that could be drawn because the 

potential for individuals to be present in a portion of the study area not being surveyed 
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could alter the perception of habitat usage.  Thus, the ability to detect fine-scale patterns 

of occurrence was beyond the scope of this study.  

Social network analysis was used to visually examine association patterns among 

individuals; individuals that did not link to the main social network were potentially 

indicative of multiple populations.  For an explanation of social network analysis, see 

section on Social network analysis. 

Lagged identification rate 

Given that the identification of the study population is dependent in part on 

presence in the study area, it is important to assess the potential for movement of 

individuals in relation to the area being surveyed.  The lagged identification rate (LIR) is 

the probability that an individual documented in the study area at a given time will still be 

present (τ) time lags in the future (Whitehead 2001) and is given by Equation 2: 

∑      mjk 

R(τ) =       j,k\(tk-tj)=τ               Equation 2 

∑      nj ∙ nk 

     j,k\(tk-tj)=τ 

 

Following Whitehead (2001), “ni is the number of individuals identified in 

sampling period j and mjk is the number of individuals identified in both periods j and k”.  

Although both the Lagged Association Rate (see sections on Temporal aspects of social 

structure) and LIR are temporal analyses, the lagged identification rate is not a dyadic 

association measure and is simply the probability of an individual remaining in the study 

area divided by the size of the study population within the same area.  LIR analysis 

affords the option to define the area(s) being considered in the analysis which can then be 

used to calculate rates within and/or among certain areas.  Given the paucity of 
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identifications from other islands, only identifications from the island of Hawai„i were 

used in this analysis; all encounters were included regardless of coverage.  The lagged 

identification rate was displayed graphically with time lag (τ) along the x-axis. 

To aid in the interpretation of lagged identification rates, models generated using 

SOCPROG 2.4 (Whitehead 2009) in MATLAB Student version 7.1 (MATLAB 2005) 

were fit to the data using maximum likelihood and binomial loss (Table 2.2); selection of 

the most appropriate model was determined as that with the lowest quasi Akaike 

Information Criterion (QAIC) value.  Relative support for the different models was 

determined using the difference in QAIC values (ΔQAIC) among that of the best-fit 

model and other models.  Differences of 0-2 indicated strong support; 4-7 indicated some 

support; and differences greater than 10 indicated no support (Whitehead 2009).  

Although the nature of the data violates the assumption of independence, selection of the 

QAIC over the Akaike Information Criterion (AIC) provides acceptable compensation 

(Whitehead 2007).  Standard error was estimated using 1,000 bootstrap replications. 
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Table 2.2. Exponential models available in SOCPROG 2.4 that can be fitted to the LIRs 

using maximum likelihood and binomial loss.  Models describe movements of 

individuals in and out of one study area; model equations and possible interpretations 

were taken from the SOCPROG 2.4 manual (Whitehead 2009).   

Model Model Equation 
Possible Model Interpretation 

(N=population in the study area) 

A R= a 
Closed population  
1/a=N 

B R=1/a Closed population  
a=N 

C R= b*e-aτ 
Emigration/mortality  
a=emigration rate 
1/b=N 

D R= (1/a)*e(-τ/b)  
Emigration/mortality 
a=N 
b=Mean residence time 

E R=b+c*e(-aτ) 

Emigration + remigration 
a=emigration rate 
b/(b+c)=proportion of population 
in the study area at a given time 

F R=(1/a)*((1/c)+(1/b)*e(-(1/c+1/b)τ))/(1/c+1/b) 

Emigration + remigration 
a=N 
b=Mean time in the study area 
c=Mean time out of study area 

G R=c*e(-aτ)+d*e(-bτ) Emigration + remigration + 
mortality 

H R=(e(-dτ/a))*((1/c)+(1/b)*e(-(1/c+1/b)τ))/(1/c+1/b) 

Emigration + remigration + 
mortality 
a=N 
b=Mean time in the study area 
c=Mean time out of study area 
d=Mortality rate 

Dyadic associations 

As the name suggests, an association index is an estimation of the proportion of 

time (range 0.0-1.0) two individuals spend associated.  Rather than simply measuring the 

number of co-occurrences among dyads, association indices provide a quantitative 

measure of the frequency of co-occurrence by also controlling for effort (Whitehead 

2008b).  Several association indices have been proposed to compensate for potential 
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biases in the data collected; the most appropriate association index is one that equals or 

most closely matches the true association index (Cairns & Schwager 1987, Whitehead 

2008b).  Assuming biases in the dataset do not exist, the most appropriate and least 

biased association index is the simple ratio index (SRI) of association (Cairns & 

Schwager 1987), given by Equation 3.   

 

       SRI=                  x           Equation 3 

x+yAB+yA+yB   

    

Here, x is the number of sampling periods individuals in which A and B are 

observed in association; yAB is the number of sampling periods where A and B were 

identified but were not observed in association; yA is the number of sampling periods in 

which only A was identified; yB is the number of sampling periods in which only B was 

identified.   

The simple ratio index of association (and therefore the ideal data set) assumes 

that all individuals within a sampling period are identified, are equally identifiable, and 

that individuals are identified irrespective of dyadic association (Ginsberg & Young 

1992, Whitehead 2008b).  For situations in which not all assumptions are met (as with 

many field studies), the SRI will become biased and alternate association indices are 

preferable.  The half-weight index (HWI) of association is suggested in situations in 

which not all individuals within a sampling period are identified or when individuals are 

more likely to be identified when they are not in association (Cairns & Schwager 1987, 

Whitehead 2008b) and is given by Equation 4. 

       HWI=    x           Equation 4 

x+yAB+1/2(yA+yB)   
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Although Ginsberg & Young (1992) recommend using the simple ratio index of 

association with the intention of discussing any potential biases, the nature of the current 

data set is inherently biased such that not all individuals were identified during many of 

the sampling periods.  Thus, the HWI was selected as the most appropriate association 

index as it was less biased in this situation.  Unless otherwise stated, only individuals 

seen off the island of Hawai„i on more than 4 occasions were included in the analysis and 

the half-weight index of association was used.  For ease of readership, association indices 

will be reported in the format AI±SD. 

Social differentiation and precision analysis 

As addressed by Whitehead (2008b), association indices are estimates of the 

proportion of time a pair of individuals spends associating and may not necessarily reflect 

true relationship patterns.  A correlation coefficient (r) between true association indices 

(amount of time actually spent associating) and estimated association indices was 

therefore used to determine how accurately matrices of association indices modeled 

social structure.  A correlation coefficient of r=0.8 is considered strongly representative 

of social structure, while r=0.4 is considered somewhat representative (Whitehead 

2008b).  The correlation coefficient was estimated from Equation 5, 

               r=          S           Equation 5 

    CV( AB)   

    

where (S) is the social differentiation of the system (Whitehead 2008a, b), representing 

the coefficient of variation (CV) of the true association indices, and CV( AB) is the CV of 

the estimated association indices.  Social differentiation is a measure used to indicate the 

relative homogeneity of association indices, with a value between 0-0.3 indicative of a 
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somewhat homogenous society, greater than 0.5 indicative of a differentiated society and 

greater than 2.0 indicative of a strongly differentiated society (Whitehead 2008a, b).  

Both the correlation coefficient and social differentiation estimates were calculated using 

the half-weight index of association, the likelihood method with 100 bootstrap replicates 

and a resolution of integration = 0.001. 

Once the social differentiation of the system was calculated, the value was 

compared to Table 3.15 in Whitehead (2008b) in order to estimate the number of 

observations per dyad needed to form a somewhat accurate view of social structure (at 

r=0.4) and a highly accurate view (at r=0.8).  While the nature of the study population 

violates the assumption that “effort is equally concentrated on all dyads,” the equation 

may still provide a useful approximation of the amount of data required (Whitehead, pers. 

comm.). 

Preferential associations 

While an association index is an appropriate measure of the strength of a dyadic 

relationship, it does not indicate whether the observed relationship resulted from random 

associations or if the dyad actively discriminated among members of the study 

population.  This is most appropriately addressed with a modification of Bejder et al.‟s 

(1998) permutation test by Whitehead (1999, 2008a) and carried out using SOCPROG 

2.4.  Here, the null hypothesis states that members of the study population associate 

randomly among other available members and do not preferentially associate with or 

avoid other members of the same population.  The permutation tests used here are a series 

of random, non-independent data sets created by permuting the data through a number of 

flips sufficient to stabilize the p-value.  There are several options available for permuting 
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data.  „Permuting groups within samples‟ uses a group by individual matrix to test the 

null that there are no preferred/avoided companions within a sampling period by taking 

into account the number of groups in which each individual was seen during the sampling 

period.  This method tests for both short-term (within a sampling period) and long-term 

(between sampling periods) preferred/avoided companions by examining the SD and 

mean of association indices; a significantly high SD of the real association indices is 

indicative of preferred companions extending between sampling periods, and a 

significantly low mean of the real association indices is indicative of preferred 

companions within a sampling period (Whitehead 2008b, 2009).  „Permuting associations 

within samples‟ uses a symmetric association matrix to test the null of no 

preferred/avoided companions between sampling periods by taking into account the 

number of associations for a given individual within the sampling period.  This method 

tests for long-term preferred/avoided associations by examining the SD of the association 

indices; a significantly high SD of the real association indices is indicative of 

preferred/avoided companionships extending between sampling periods (Whitehead 

2009).  Whitehead (2008b, 2009) has suggested that „permuting associations within 

samples‟ is the most useful of the different permutation methods due to fewer 

assumptions and the fact that, unlike „permuting groups within samples,‟ it controls for 

gregariousness as well as factors affecting the presence of group members (birth, 

mortality, migration).  However, it does not describe short-term companionships; 

therefore, both tests are included here.  Differences in gregariousness were also tested; a 

significantly high SD of typical group sizes (p>0.95) taken from „permuting groups 
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within samples‟ indicates that individuals consistently differ in the size of the groups in 

which they are encountered.   

Preferred associations among dyads were determined by examining dyadic 

association indices relative to the mean association index of the study population; 

following Durrell et al. (2004) and Gero et al. (2005) “preferred associations” were those 

with an association index ≥twice the mean association index of the study population and 

“acquaintances” were those that fell below this threshold.   

Detecting community structure 

In order to determine whether realistic divisions exist within the study population, 

the modularity (Newman 2004) of the population was measured using association 

indices.  Modularity (Q), defined as the difference between the proportion of the total 

association within clusters and the expected proportion, has a range from 0.0 (randomly 

formed clusters) to 1.0 (clusters with no shared associations).   SOCPROG 2.4 

implements two modified versions of Newman‟s (2004) test to calculate expected 

proportions, the first controlling for gregariousness by focusing on association preference 

(termed Modularity-G), and the second controlling for gregariousness and data structure 

by focusing solely on preferred/avoided associates (termed Modularity-P).  Whitehead 

(2008b) noted that maximum modularity would likely be higher for Modularity-G since it 

has the advantage of incorporating past sighting history.  Newman (2004) indicates that 

acceptable cluster division occurs at Q≥0.3.   

Several methods available for delineating clusters (including cluster analysis and 

social network analysis detailed below) were used in order to ensure the most accurate 

representation of the population structure (i.e., the method yielding the highest 
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modularity).   Temporal methods were also employed to determine whether clusters 

defined using the methods mentioned above were indeed representative of social units or 

were possible artifacts of individuals associating frequently over a short temporal scale 

(for temporal analysis see section on Delineating stable groups (units)).  Analysis was 

restricted to individuals sighted on more than four occasions.   

Cluster analysis 

Despite being considered marginally useful when dealing with large, sparse 

populations (Whitehead 2008b), cluster analysis can be a useful way to classify and 

visually display relationships between individuals using association indices.  A variety of 

methods exist that can be used to determine how individuals within the study population 

are clustered; results are often visually displayed using a tree-like shape characteristic of 

dendrograms.  Here, clusters of individuals are formed that correspond to association 

strengths along an axis; the branchlets are representative of tightly-clustered individuals 

(with a corresponding high index of association) while larger branches are representative 

of clusters with a lower association index.  Dendrograms are thus hierarchically-

structured where individuals that are clustered at low indices of association are less 

strongly associated than those at higher indices.  As cautioned by Whitehead (2008b), a 

dendrogram can prove visually deceptive, purporting complex social structures when 

none in fact exist.  The use of a cophenetic correlation coefficient (CCC) is therefore 

necessary to separate suspect dendrograms from those that are truly representative of 

complex social structure.   A CCC indicates whether cluster analysis can be appropriately 

used to model social structure by measuring the correlation strength between the dyadic 

association values in the similarity matrix and their position within the dendrogram.  
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Values for the CCC range from 0.0 (no correlation) to 1.0 (complete correlation) with 

CCC≥0.8 indicative of a well-represented population (Whitehead 2008b, 2009).   

For the purposes of this study, an agglomerative hierarchical cluster analysis 

using average-weight linkage was chosen and implemented using SOCPROG 2.4.  

Hierarchical cluster analysis is most appropriate when working with a similarity matrix 

(e.g., association indices) as non-hierarchical cluster analyses rely on rectangular 

matrices to construct the dendrogram, and are thus not applicable.  The formation of 

clusters can be either a divisive or agglomerative process; here the agglomerative 

method, which begins with each individual existing in its own cluster and establishes 

links with other individual(s) based on degree of association, was selected based on 

accuracy and relative computation time (Whitehead 2008b).  Once clusters were 

constructed, associations were calculated using the average-linkage method which works 

directly on similarity matrices and is favored over other methods such as single-linkage 

or complete-linkage methods as it is less affected by sampling error and extreme values 

(Whitehead & Dufault 1999).  As suggested by the name, the average-linkage method 

averages all similarities between individuals and neighboring clusters rather than relying 

solely on the most similar (single-linkage) or least similar (complete linkage) individual.   

Dendrograms can provide a useful visual display of how individuals within a 

study population are clustered; however, cluster analysis alone provides no further 

information about the relative social significance of a given cluster.  It is thus important 

to define points along the dendrogram (sometimes referred to as “stopping points”) that 

can be used to delineate sociologically meaningful clusters.  Several different criteria 

have been used in previous studies of cetacean social structure to delineate groups.  For 
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studies of the fish-eating killer whale ecotype from coastal Pacific waters of northern 

Washington and southern British Columbia, a “50% rule” was used in which individuals 

that spent at least 50% of their time associated were considered a “pod” (Bigg et al. 

1990), whereas a study of sperm whales considered any individual with an association 

index more than twice that of the average across the study population to be grouped 

(Gero et al. 2005).  Following the advice of Whitehead (2008b) and Lusseau (2007), 

modularity was used to determine where (if at all) meaningful clusters exist along the 

dendrogram.  Using a modification to Newman‟s (2006) test for modularity, Lusseau 

(2007) designed a method to maximize modularity through a series of tests along the 

dendrogram, with maximum modularity providing a corresponding association index 

(i.e., stopping point).  Clusters formed above this stopping point represented meaningful 

social divisions within the study population.  To examine whether substructure existed 

within clusters, the presence of meaningful sub-clusters was investigated for each cluster 

using community division.   

Social network analysis 

In contrast to dendrograms which are visually hindered by large study 

populations, social networks have the ability to visually present the same population in a 

more clear and accessible manner.  In simple terms, social networks graphically depict a 

social system using nodes (or vertices) to represent individuals within the study 

population and edges (or ties) to link associated individuals.  Social network analysis thus 

adopts a comprehensive approach to the study of social structure by combining graphical 

network displays with quantitative analysis.  
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Originally developed from mathematical graph theory and used to model human 

relationships, social network analysis has recently been applied to the study of non-

human vertebrate societies (Croft et al. 2004).  As such, analyses applicable to similarity 

matrices are still being developed; the introduction of weighted networks, which indicate 

association strengths between dyads as opposed to a 1:0 binary network designation of 

present: absent, are particularly useful.   

As opposed to the agglomerative method utilized in hierarchical cluster analysis 

to assign individuals to clusters, social network analysis creates clusters using a divisive 

method.  Here, all individuals within the study population are initially contained within 

one large cluster which is further divided until a desired stopping point (such as 

maximum modularity), is reached.  Following a method for maximizing modularity in 

weighted networks developed by Newman (2006) and implemented in SOCPROG 2.4, 

the study population was divided based on the dominant eigenvector of the modularity 

matrix such that cluster division was stopped when modularity was maximized.  

Whitehead (2008b) has suggested that of the two methods used to divide the study 

population into clusters, the eigenvector-based method utilized in social network analysis 

is preferable, yielding the highest modularity for both modularity-G and modularity-P in 

tested data sets.   

In order to determine if associations within clusters were significantly different 

than associations among clusters a Mantel test was carried out for clusters formed using 

both hierarchical cluster analysis and social network analysis.  As the data are not 

independent, a Mantel test with 1,000 permutations was also conducted; a resulting large 
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p-value, positive t-value and positive matrix correlation indicate associations are 

significantly higher within clusters than among them. 

Temporal aspects of social structure 

Referring back to Hinde‟s (1976) framework, an important aspect of social 

structure is the temporal patterning of relationships.  As this might suggest, the 

identification of dyadic associations in the absence of a temporal context offers little 

insight into the longitudinal nature of these relationships.  In order to examine dyadic 

associations against a temporal scale, Whitehead (1995) introduced a series of analyses to 

describe how relationships change with time.  Centered on dyadic relationships and 

generalized to the societal level, the lagged association rate (LAR) is the probability that 

two individuals associated at a given time will still be associated (τ) time lags in the 

future, and is given by Equation 6: 

∑       ∑   ∑  aj(X, Y) ∙ ak(X, Y) 

g(τ) =        j,k\(tk-tj)=τ  X  Y≠X             Equation 6 

∑       ∑   ∑  aj(X, Y) ∙ ak(X, X) 
     j,k\(tk-tj)=τ  X  Y≠X 

 

For sampling period j, aj(X, Y) = 1 if X and Y were observed in association and 

aj(X, Y) = 0 if X and Y were not observed in association (or if either individual was not 

recorded).   Similarly, for sampling period k, ak(X, X) = 1 if X was observed and ak(X, X) 

= 0 if X was not observed.  The lagged association rate is an estimate that uses individual 

identification histories to calculate the ratio of the number of observed dyadic 

associations occurring at different time lags to all potential associations.  In situations in 

which it is unclear whether all individuals within each sampling period were accurately 

identified, Whitehead (1995) suggests using the standardized lagged association rate 
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(SLAR) in place of the LAR; the SLAR estimates the probability that if two individuals 

(X,Y) are associated, then following some chosen time lag (τ), a randomly chosen 

associate of X will be Y.  The standardized lagged association rate is given by Equation 7   

∑         ∑   ∑  aj(X, Y) ∙ ak(X, Y) 

g΄(τ) =        j,k\(tk-tj)=τ  X  Y≠X            Equation 7 

∑        ∑    ∑  aj(X, Y) ∙    ∑ ak(X, Y) 
      j,k\(tk-tj)=τ  X    Y≠X        Y≠X 

 

Lagged association rates are displayed graphically with time lag (τ) along the x-

axis and are plotted using a moving average that can be adjusted by changing the range of 

time over which g(τ) is calculated (and thus the number of potential associations 

considered) to eliminate random noise and create a smoother graph.  However, care must 

be taken to find an appropriate moving average that does not compromise the data, as τ 

will become less precise as the lagged association rate curve becomes smoother.   

As with other methods outlined thus far to describe the social structure of the 

study population, inclusion of a null model provides an important basis for comparison.   

Here, the null association rate represents the lagged association rate in the absence of 

association preference and is calculated for each sampling period using the ratio of the 

average number of associates of an individual to the number individuals documented 

(minus that individual).   The standardized null association rate is not calculated for each 

sampling period and is simply the inverse of the number of individuals documented (i.e., 

population size) minus that individual. 

SOCPROG 2.4 provides four models that can be used to describe SLARs; models 

accompanied by brief explanations offered in the program are shown in Table 2.3.  All 



 

52 

 

 

 

SLAR models were fit to the curve using maximum likelihood and binomial loss; the 

model with the best-fit was determined as that with the lowest QAIC value.   

Table 2.3. Exponential models available in SOCPROG 2.4 that can be fitted to the LARs 

and SLARs using maximum likelihood and binomial loss.  Models allow for quantitative 

analysis of the lagged association rate(s); possible interpretations are also given.   

Model Description Model Equation Possible Model Interpretation 

Constant Companions 
(CC) 

g΄= a 
Permanent associations, possibly indicative 
of closed, non-interacting units 

Casual Acquaintances 
(CA) 

g΄= a*e-bτ Association followed by disassociation and 
possible later re-association 

CA+CC g΄= a + c*e-bτ 
Association followed by disassociation at 
some time lag to a lower level of association 
where associations stabilize 

Two Levels of CA’s g΄= a*e-bτ + c*e-dτ 
Association and disassociation occurring on 
two different time scales 

As neither confidence intervals nor nonparametric bootstraps are practical 

measures of precision for LARs or SLARs, Whitehead (2007) recommends temporal 

jackknifing, an approximate measure of precision in which one or more sampling periods 

are eliminated during repeated runs of the analysis (Efron & Stein 1981).  Jackknifing is 

considered an acceptable measure of precision by Whitehead (1995, 2007) in spite of the 

fact that estimates are conservative and the assumption of independence might not be 

met.  Jackknife estimates are indicated by error bars on the graph.   

Only individuals documented off the island of Hawai„i were included in this 

analysis; however, sighting histories were not restricted as the lagged association rate is 

meant to describe the entire population, not just those most frequently encountered.  

Given the possibility of missed associations within the study population, the standardized 

lagged association rate was used in all analyses.  
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Delineating stable groups (units) 

In order to begin to detect the presence of long-term social bonds between 

individuals, a robust sighting history is needed; therefore, individuals most commonly 

observed in the study area (i.e., core residents) were used in the analysis of group 

structure.  Following the original framework of Christal et al. (1998) and modifications 

of Ottensmeyer & Whitehead (2003) and de Stephanis et al. (2008), “units” of pilot 

whales were defined as key individuals and their constant companions.  Criteria for the 

selection of key individuals were designed to capture those with longitudinal sighting 

histories in the study area and was defined as individuals sighted in at least four different 

years and on eight different occasions (with sightings between years separated by a 

minimum of 180 days).  Specifying a span of 180 days for sightings between years 

ensured that calendar years did not artificially inflate sighting records (e.g., an individual 

seen in December of one year and January of the next is technically seen in two different 

years though it provides little temporal information) and allowed for comparison with the 

study of long-finned pilot whale social structure in the Strait of Gibraltar (de Stephanis et 

al. 2008b).  Although specifying a span of 180 days between sightings was somewhat 

arbitrary, when applied it did not remove any potential key individuals from the analysis.  

Using the above criteria, it was possible for key individuals with overlapping sighting 

histories to belong to the same unit; in such instances, association indices were also 

examined to determine whether allocation to the same unit was truly representative of 

longitudinal association preferences or if it was simply an artifact of extensive sighting 

histories.  Thus, a minimum dyadic association index of 0.50 was required in order for 

key individuals to be placed in the same unit; in situations in which the association index 
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was below 0.50 for one or more dyads, a key individual was only allowed to remain in 

the unit if the majority (>50%) of dyadic associations were above the 0.50 criterion.  

Similarly, key individuals that did not meet the minimum criteria for inclusion in a given 

unit but that did have multiple dyadic associations above 0.50 with other key individuals 

were also considered on an individual basis.  Selection of a minimum association index 

of 0.50, while somewhat arbitrary, mirrors an established criterion for designating “pods” 

of killer whales in coastal North Pacific waters (Bigg et al. 1990) and allows for limited 

comparison between killer whale populations and the study population. 

Constant companions were defined as individuals sighted with key individuals in 

at least three different years and five different occasions (with sightings between years 

separated by a minimum of 180 days).  As with key individuals, multiple constant 

companions could be assigned the same unit providing that the majority (>50%) of 

dyadic associations were above the 0.50 criterion for both key individuals and other 

constant companions.  Given the sighting criteria mentioned above, it was also possible 

to assign constant companions to more than one unit; in such situations association 

indices were examined to determine the most appropriate unit for allocation. 

Once units were established using the outlined criteria, each was examined 

quantitatively and qualitatively to ensure unit membership was an accurate depiction of 

social structure; any discrepancies and subsequent changes are addressed in the results 

section.    
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Results 

Effort and sightings 

A total of 30,470 km of trackline (265 days on the water, 1,899 h of survey effort) 

were covered during the study period, over which time short-finned pilot whales were 

encountered an average of once every 105 km or every 6.5 hours of effort (Figure 2.1).  

Short-finned pilot whales were the most frequently encountered species of odontocete 

during the study period, representing 23% of all directed research sightings.  A total of 

298 short-finned pilot whale encounters were photographed off the main Hawaiian 

Islands between 2003 and 2007, and a total of 50,480 photographs were analyzed for the 

current study.  Effort varied significantly among islands with the majority of both effort 

and sightings from which photos were available occurring off the leeward side of the 

island of Hawai„i (267, 90%); 123 from directed research efforts and 144 from WWRF 

efforts.  Twelve directed research encounters were available from a 2003 survey off 

Lana„i, O„ahu, Kaua„i and Ni„ihau and an additional five encounters were available from 

a 2005 survey off Kaua„i.  Ten opportunistic encounters from O„ahu (spanning 2004-

2007) and four opportunistic encounters from Kaua„i (2005, 2007) were also analyzed. 

Over the course of the study, short-finned pilot whales were encountered off the 

main Hawaiian Islands in every month of the year, and off the island of Hawai„i in every 

month of the year expect June, when there was no research effort off the island.  Effort 

from 2008 has since confirmed the presence of short-finned pilot whales off Hawai„i 

during the month of June.  Although research effort varied seasonally and between years, 

short-finned pilot whales were encountered during every month of directed research, with 

the exception of October of 2004 when the only sighting during that time period was by 
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WWRF. 

 

Figure 2.1. Map showing directed research effort around the main Hawaiian Islands from 

2003 through 2007.  Short-finned pilot whale sightings are represented by blue diamonds 

and survey tracklines are shown in red; the 1,000 m and 2,000 m depth contours are 

represented as broken lines. 

Surveys were conducted as far as 70.08 km from shore; however, the majority of 

survey effort occurred within 15 km of shore and effort decreased with increasing 

distance from shore.  Short-finned pilot whales were sighted 2-24 km from shore with the 

highest sighting rates (corrected for effort) occurring 6-10 km from shore (Figure 2.2).  

Sightings off the island of Hawai„i occurred 5-25 km from shore, with 76 sightings 

(55.1%) 5-10 km from shore.      
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Figure 2.2. Distance from shore of short-finned pilot whale sightings (per 100 h effort) 

around the main Hawaiian Islands from 2003 through 2007.   

Short-finned pilot whales were sighted in depths ranging from 371 to 2,616 m, 

with the highest sighting rates (corrected for effort) between 1000-2000 m depth (Figure 

2.3).  Sighting rates were lowest in water depths less than 500 m and greater than 2,500 m 

(Figure 2.3).   
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Figure 2.3. Depth distribution of short-finned pilot whale sightings (per 100 h effort) 

around the main Hawaiian Islands from 2003 through 2007.   

Assessing encounter coverage 

Field estimates of the percent of the group that was observed during an encounter 

(% coverage) were available for 86 of the 141 directed research encounters around the 

main Hawaiian Islands; of these, 42 (48.8%) had 100% coverage while 11 (12.8%) had 

coverage of 50% or less.  Such incomplete sampling indicates that not all individuals 

present were documented and that some dyadic associations were missed.  Removing 

encounters with a coverage index <2 (see Methods) resulted in 262 encounters, 241 of 

which were off the island of Hawai„i.  Although the coverage index largely 

complimented the % coverage estimate by removing many encounters with low % 

coverage, the two coverage measures at times conflicted.   Eight encounters with a 

coverage index ≥2 had % coverage estimates ≤50% (range 10%-50%); for each of these 
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encounters, the number of individuals photo-identified in the field was less than the 

estimated group size.   

Groups could be incompletely sampled for several reasons; presence of a higher 

priority species, losing sight of the group, adverse weather conditions and/or fuel 

constraints were collectively responsible for 27 terminated encounters (19.1% of all 

encounters).  The most common reason for leaving a group (96 encounters; 68.1%), to 

continue searching after some of the individuals had been identified, was a conservative 

measure used either when it was known that the group was incompletely sampled or if 

there was any uncertainty.  Although only 18 encounters listed “complete identification 

of the group” as a reason for leaving, the 42 encounters that estimated 100% coverage 

had no difference between the estimated group size and number of individuals 

photographically identified, suggesting that some of the groups that listed only “some 

identified” were likely completely sampled.  Reasons for leaving the group did not 

necessarily correspond to % of group sampled, however; 100% coverage was also 

recorded for some encounters terminated due to weather conditions, the group not being a 

priority and when the search was continued after some of the individuals were sampled. 

Groups 

For encounters with photographic coverage and group size estimates available, 

the mean group size was 20.4 individuals (range: 1-53, SD±9.6, n=175) for the main 

Hawaiian Islands and 20.7 (range 1-53, SD±9.6, n=157) for the island of Hawai„i.  In 

contrast, the average number of individuals photographically identified for those same 

encounters was 16.3 individuals (SD±8.9) for the main Hawaiian Islands and 16.6 

(SD±9.0) for the island of Hawai„i, indicating that in some cases the percent of the group 
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that was photographically documented was less than the number of individuals present or 

that group size estimates were positively biased.  However, when only considering 

encounters with 100% coverage, the difference between the average group size estimate 

and number of individuals identified was negligible (mean=0.49, SD±3.0, median=0, 

n=41).   

Group composition 

Group composition was visually estimated in the field using previously 

established parameters for age and sex determination.  Of 141 directed research 

encounters around the main Hawaiian Islands with photographic coverage, neonates were 

observed on 11 occasions in four different years (in 7.8% of sightings) with all sightings 

occurring between July and November, and five of the 11 sightings occurring in July.  

Young of the year were observed on 54 occasions (37.5% of sightings), with sightings 

occurring in all months of the year except March and June.  The presence/absence of 

adult males was noted in the field for 97 of the directed research encounters; of these, one 

or more (range 1-8) adult males were present in 87 (89.7%) encounters in all months with 

effort.  Neonates were observed in the same group as adult males on six occasions 

(54.5% of sightings that included neonates), suggesting short-finned pilot whales 

commonly travel in groups of mixed sex and age, although with some segregation 

between adult males and neonates. 

Distinctiveness and rate of mark change 

Restricting encounters to those with coverage ≥2, 80.5% (SD±16.5%; 

median=82.1%) of the entire study population was estimated to be distinctive and 81.2% 

(SD±16.2%; median=82.4%) was estimated to be distinctive off the island of Hawai„i.  
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The proportion of individuals within the study population that were re-sighted increased 

with increasing distinctiveness; 55.9% of non-distinctive individuals, 70.0% of slightly 

distinctive individuals, 79.4% of distinctive individuals and 87.0% of very distinctive 

individuals were re-sighted over the course of the study.  Similarly, the mean number of 

times an individual was re-sighted generally increased with increasing distinctiveness, 

(although there was no difference between distinctive and very distinctive individuals): 

non-distinctive individuals (mean= 2.3), slightly distinctive individuals (mean= 3.2), 

distinctive individuals (mean= 5.1) and very distinctive individuals (mean=5.1). 

A total of 155 mark-change or acquisition events (183 individual mark changes) 

were documented on 105 individuals, 78 of which were considered distinct or very 

distinct.  Mark changes resulted in a change in distinctiveness rating on 15 occasions, and 

on nine occasions mark changes elevated the distinctiveness of an individual from 

slightly distinct to distinct; in such cases, an individual‟s entire sighting history was 

reclassified as distinctive and included in subsequent analyses.  Restricting analyses to 

only those individuals documented off the island of Hawai„i that were distinctive or very 

distinctive, the mark-change rate was estimated to be once every 2.9 to 3.5 years, 

depending on whether multiple mark changes were considered to have occurred 

independently or not, respectively. Assuming this rate applies across all age/sex classes, 

this translates to between 28.6% and 34.5% of the population undergoing mark changes 

each year. 

Individual sightings  

Using only good and excellent-quality photos, a total of 448 distinctive 

individuals were identified off the island of Hawai„i during the study period; of these, 
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305 (68.1%) were seen more than once and 250 (55.8%) were seen in more than one 

year. Individual sighting histories varied substantially, ranging from individuals seen 

once over the entire course of the study to individuals seen a total of 27 times and in all 

five years of the study (range 1-29, median=3).  Despite 4,611 total identifications (2,877 

when restricted to Dist≥3, PQ≥3, coverage≥2), only 14 individuals were documented 

moving between islands (representing 0.30% of all identifications and 0.49% of 

distinctive identifications), and these represented only two groups moving between 

islands.  In February 2005, 13 individuals documented off Kaua„i were re-sighted in 

September of that same year off the island of Hawai„i; however, six of the Kaua„i 

individuals were removed from the analysis due to distinctiveness and photo quality 

restrictions.  Similarly, one individual documented off Kaua„i in 2003 and 2005 was 

sighted off O„ahu in 2006; however the 2006 encounter also was removed due to 

coverage and photo quality restrictions.  It should be noted that the 13 individuals sighted 

off Kaua„i and later re-sighted off the island of Hawai„i had extensive sighting histories 

off Hawai„i Island between 2005 and 2007; each of the seven distinctive individuals was 

documented on 13-18 occasions (mean=16.3) in three separate years, and those 

individuals were not documented with any other individuals off Kaua„i (see section on 

Delineating stable groups, associations of Unit B1).   

Although effort off other islands within the archipelago is limited, multi-year 

within-island re-sightings were documented for every island with effort.  Detailed 

analysis of re-sighting rates off Kaua„i and Ni„ihau between 2003 and 2005 are available 

from Baird et al. (2006) and re-sighting rates off Kaua„i and O„ahu (which incorporate 
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encounters from 2003-2011) are available from Baird et al. (2011); therefore, these 

results are not presented here.   

Rate of discovery of new individuals 

An assessment of the rate of discovery of new individuals (Figure 2.4) showed a 

steady increase in the number of new individuals identified during the first two years of 

the study (2003-2004) and for the majority of the encounters in 2005.  Beginning late in 

2005 and continuing into 2006, the curve began to level off as more of the individuals 

encountered were re-sightings of previously identified individuals rather than new 

individuals entering the study.  Visually, the curve appeared to reach an asymptotic limit 

around 480 individuals in late 2006; however, the curve continued to climb as new 

individuals were identified in 2007.  The shape of the discovery curve illustrates the high 

level of re-sighted individuals seen off the island of Hawai„i relative to the total number 

of individuals identified.   

Of the individuals seen only once, 17 (representing seven encounters) were first 

documented in the first two years of the study, 34 (representing eight encounters) were 

first documented in 2005, 49 (representing 11 encounters) were first documented in 2006 

and 43 (representing six encounters) were first identified in 2007.  Individuals were 

documented in all seasons of the study.   
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Figure 2.4. Rate of discovery of new individuals showing the cumulative number of 

individuals documented versus the cumulative number of identifications made (maximum 

of one identification per day) off the island of Hawai„i. Top: including a 1:1 line for 

comparison. Bottom: detailed view of the curve.  
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Residency to the study area 
 

Based on established residency criteria, a total of 156 core residents, 150 

residents and 142 visitors were identified.  A social network diagram identified a core 

social network of 322 individuals (71.9% of the Hawai„i study population) and ten 

satellite clusters containing 126 individuals (membership range 2-32; mean=13.4) that 

did not link back to the main component (Figure 2.5).  A solitary node was also present; 

closer inspection shows that this individual was originally sighted with one other 

individual but was the only member in the group with sufficient distinctiveness and photo 

quality to be included in the analysis.   

With the exception of two individuals, all individuals present in the satellite 

clusters were determined to be residents or visitors based on sighting history; 85 (67.5%) 

of the individuals were seen on one occasion, 36 (28.6%) were seen twice, and three were 

seen four times. The two core resident individuals that did not link back to the main 

social network were present in the largest of the satellite clusters, a cluster of 32 

individuals sighted 1-5 times.  All core residents (with the exception of one), 52.7% of 

residents and 36.6% of visitors were first identified in 2005 or earlier.  Over the course of 

the study, 87.7% of core residents and 13.3% of residents were seen in ≥three seasons.  

Following the definitions of resident and visitor, individuals that were seen infrequently 

could still link to the main social network and could also link to core residents if 

documented in the same encounter; thus the main social network was composed of 57 

visitors, 98 residents and 154 core residents (Figure 2.6).  Inspection of the main social 

network showed two distinct cut-points, areas of the network where individuals were 

linked to main component by a single individual; removal of either individual would 
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sever the link, creating two isolated components.  One of the cut-points identified was of 

a resident linking 32 visitors to the main social network, and the other was of a core 

resident linking 14 residents and 18 visitors to the main social network, suggesting a 

weak association between these individuals and the main component.      

 

 

 

Figure 2.5. Social network diagram of all distinctive short-finned pilot whales 

documented off the island of Hawai„i from 2003 through 2007.  Distances between nodes 

were determined using a spring-embedding algorithm to depict closeness between 

individuals.  Core residents are shown as white circles, residents are shown as gray boxes 

and visitors are shown as black triangles.  Note the two core residents that do not link by 

association to the main social network. 
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Figure 2.6. Enlargement of main social network cluster taken from Figure 2.5.  Note the 

presence of two cut-points (clusters linked to the main component by a single individual). 

Removal of either individual would cause the main cluster to fragment slightly. 

Lagged identification rate 

Using a sampling period of a day, the model that best described the movements of 

the study population off the island of Hawai„i was of “emigration and remigration” 

(Models E and F, Table 2.4, Figure 2.7).  The models indicate that on average, 136 

(SE=7.43) individuals were in the study area at any one time, and that an individual 

remained in the study area an average of 74.3 (SE=9.2) days.  Individuals were estimated 

to spend an average of 56.6 (SE=4.70) days outside of the study area with an emigration 

rate per individual per day of 0.031 (SE=0.018).  For further discussion of lagged 

identification rates, see section on Temporal aspects of social structure. 
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Table 2.4. Exponential models fitted to the entire dataset using maximum likelihood and 

binomial loss, and used to describe movements of individuals in and out of study area off 

the island of Hawai„i.  The best-fit model was that with lowest ΔQAIC value; standard 

errors were obtained using 1,000 bootstrap replications.   

Model Best Fit Parameters QAIC 
Δ 

QAIC 

Model 

Support 

E 
R=0.0041742+0.0031783*e

(-

0.0311142τ) 

Emigration + 

remigration 

0.0311142=emigratio

n rate 

0.567725=proportion 

of population in the 

study area at a given 

time 

27967.2 0 
Strong 

support 

F 

R=(1/136.0445)*((1/56.5532)+(1/74

.3294)*e
(-

(1/56.5532+1/74,3294)τ)
)/(1/56.5532+1/74.3

294) 

Emigration + 

remigration 

136.0445=N 

74.3294=Mean time 

in the study area 

56.5532=Mean time 

out of study area 

27967.2 0 
Strong 

support 

H 

R=(e
(--

.00018161τ/111.1797)
)*((1/74.8089)+(1/53.

4096)*e
(-

(1/74.8089+1/53.4096)τ)
)/(1/74.8089+1/53.4

096) 

Emigration + 

remigration + 

mortality 

 

27975.1 7.9 
Some 

support 

C R= 0.0046801*e
-0.00015199τ

 Emigration/mortality  28003.7 36.4 
No 

support 

D R= (1/213.6739)*e
(-τ/6589.3261) 

 Emigration/mortality 28003.7 36.4 
No 

support 

A R= 0.0044128 Closed population  28005.9 38.7 
No 

support 

B R=1/223.9974
 

Closed population  28005.9 38.7 
No 

support 

G 

R=-1.6947*e(-

.00015207τ)+1.6994*e(-

0.00015207τ) 

Emigration + 

remigration + 

mortality 

28007.7 40.4 
No 

support 
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Figure 2.7. Lagged identification rate (*) for short-finned pilot whales documented off 

the island of Hawai„i.  The two models that best described the study population were both 

of emigration and remigration and are shown as completely overlapping dashed lines 

(Models E and F, Table 2.4).  Standard error bars were produced using 1,000 bootstrap 

replications.   

Social differentiation and precision analysis 

The social differentiation of the study population was estimated at S=1.311 

(SE=0.014) for individuals documented on more than four occasions, indicating a well 

differentiated society.  The estimated correlation coefficient of r=0.428 (SE=0.013) 

indicated a “somewhat” accurate depiction of the social system (Whitehead 2008b, 

2009).  Social differentiation calculated using the same parameters but without the 

bootstrap replicates produced similar estimates (S=1.305, r=0.420). Given the 

computational time needed to run such a large data set with bootstraps, values of S and r 

were calculated without replicates (but with a resolution of integration=0.001) for 
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individuals documented on more than two occasions and again for those documented on 

more than three occasions.  Results showed that both the social differentiation and 

correlation coefficient increased with increasing restrictions (data not presented), 

strengthening the argument that limiting the analyses to those individuals seen multiple 

times provides a more accurate view of social structure. 

Dyadic associations 

Distinctive individuals seen on more than four occasions off the island of Hawai„i 

had an average association index of 0.06 (range=0.01-0.09, SD±0.01), indicating overall 

associations within the study population were low.  In contrast, an average maximum 

association index for each individual of 0.91 (range=0.50-1.00, SD±0.08) indicated the 

presence of some strong dyadic associations; all individuals were seen in association with 

the same individual at least 50% of the time (Figure 2.8a).  Individuals within the study 

population also differed in the number of individuals with whom they were associated 

(mean=12.15, SD±2.61); membership ranged from 2 to 18.07, suggesting differences in 

individual gregariousness (Figure 2.8b). 

2.8a) 2.8b)  

Figure 2.8. Distribution of association indices for distinctive individuals seen off the 

island of Hawai„i ≥5 times: a) maximum association index, and b) sum of associates for 

each individual. 
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Preferential associations 

Associations were found to be non-random for both short-term and long-term 

companionship.  Significantly higher SD and CV of the real data set over the permuted 

data set for both permutation tests indicated long-term preferential associations between 

individuals, while a lower proportion of non-zero association indices in the real data for 

both tests indicated the presence of long-term avoidance of some individuals (Table 2.5).  

Further, for groups permuted within samples, a significantly lower mean of the real 

association indices indicated short-term preferential associations.  Individuals were found 

to have significant differences in gregariousness (p=0.999).  P-values stabilized at 50,000 

random permutations for associations that were permuted within samples, and at 50,000 

for groups permuted within samples (both at 1,000 trial flips per permutation).  Each test 

was repeated four times once the p-value had stabilized.   

A total of 35,958 dyadic associations were possible among distinctive individuals 

in the study population; of these 4,042 (11.2%) were considered “preferred associations” 

(i.e., had an association index ≥0.12).  The majority of dyads (29,956; 83.3%) were never 

documented in association; dyads that did associate but that fell below the 0.12 

association index threshold for preferential associations accounted for 1,960 (5.45%) of 

all possible dyadic associations, indicating few casual “acquaintance” associations 

occurred within the study population. 
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Table 2.5. Tests for non-random associations among distinctive short-finned pilot whales 

seen ≥5 times off the island of Hawai„i; permutation tests performed in SOCPROG 2.4 

were used to test for short-term and long-term preferred or avoided associations and for 

differences in individual gregariousness.  P-values >0.95 are considered significant.  

 Permute groups within samples 

(short-term* and long-term test) 

Permute associations within 

samples (long-term test) 

Standard deviation 

Observed: 0.18249 

Permuted: 0.14379 

p=1.00000 

Observed: 0.18249 

Permuted: 0.14453 

p=0.99998 

Coefficient of variation 

Observed: 3.10469 

Permuted: 2.42543 

p=0.99998 

Observed: 3.10469 

Permuted: 2. 50255 

p=1.00000 

Proportion of non-zero 

AIs; proportion of non-

zero AIs from permuted 

data 

Observed: 0.16185 

Permuted: 0.27765 

p=0.00002 

Observed: 0.16185 

Permuted: 0. 26133 

p<0.000001 

Mean association index 

Observed: 0.05878* 

Permuted: 0.059298* 

p=0.00012* 

 

Standard deviation of 

typical group size 

Observed: 2.46529 

Permuted: 2.20822 

p=0.99998 

 

* indicate results reported are from short-term test. 

Detecting community structure 

Division of the study population into clusters was supported using both 

hierarchical cluster analysis and social network analysis when examining association 

preferences in conjunction with sighting history (maximum modularity-G using cluster 

analysis: Q=0.798; association index=0.048), while examining association preferences in 

the absence of sighting history did not support such a division (modularity-P using cluster 

analysis: Q=0.172; association index=0.172), suggesting sighting history plays an 

important role in social analyses.  Maximum modularity values obtained from social 

network analysis were not appreciably different from those obtained using cluster 

analysis (modularity-G: Q=0.798; modularity-P: Q=0.173).  Only results obtained using 

the modularity-G approach are discussed further as modularity-P did not support 

community division. 
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Hierarchical cluster analysis and network analysis 

The dendrogram produced (Figure 2.9) was highly representative of the structure 

within the study population (CCC=0.983).  Maximum modularity-G occurred at an 

association index of 0.048 resulting in the division of the study population into nine 

clusters of variable size and association strength (Figure 2.9).  Community division using 

Newman‟s (2006) eigenvector-based method similarly resulted in nine clusters; cluster 

membership ranged from 2-34 individuals, and mean association indices within clusters 

ranged from 0.27±0.05 to 1.00±0.00 (all values: Mean±SD).  However, it should be noted 

that one of the nine clusters (Cluster 9) differed substantially in both the number of 

individuals (two) and the mean association index (1.00); membership for the remaining 

eight clusters ranged from 16-34 (mean=23.25±7.80) individuals and mean association 

indices ranged from 0.27±0.05 to 0.78±0.06.  Cluster 9 also appeared to be socially 

isolated on the dendrogram, having no links to any of the other clusters (each of the other 

eight clusters were linked to at least one other cluster at some low level of association).   

Individuals within clusters had significantly higher levels of association than 

those among clusters (Mantel permutation test, p=1.00); the mean association index 

within clusters was 0.48±0.20 while the mean association index among clusters was 

0.00±0.00.  Maximum association indices were also substantially greater within clusters 

than among clusters (0.91±0.08 vs. 0.08±0.05), supporting the divisions within the study 

population created by maximizing modularity.  A large, positive matrix correlation 

coefficient of 0.768 further supported rejection of the null hypothesis that no significant 

difference in association strength within or among clusters existed.  Removing Cluster 9 
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from the analysis had a negligible effect, reducing the average association index within 

clusters to 0.47±0.20 and the maximum to 0.90±0.08; all other values remained the same. 

Examination of individual clusters using community division indicated the 

presence of meaningful sub-clusters in four of the nine clusters (Q= 0.069-0.441); 

Clusters 1 and 3 were each divided into two sub-clusters, and Clusters 2 and 5 were each 

divided into three sub-clusters.  However, although cluster subdivision within the study 

population was supported, maximum modularity values obtained were lower than for the 

overall study population, indicating that within-cluster divisions were not as strong.  

Further, clusters that were successfully subdivided were substantially larger than those in 

which sub-clusters were not supported (membership ranges: 26-34 and 2-17, 

respectively), indicating that cluster subdivision could partially be an artifact of size 

rather than (or as well as) social partitioning.  Considering only sub-clusters, and clusters 

1-8 where sub-division was not supported, membership ranged from 8 to 18 individuals 

(mean=12.53±3.65), substantially less than the mean group size encountered in the field.  

Although not highlighted in the dendrogram, sub-clusters are evident when viewing the 

configuration of relevant clusters in Figure 2.9. 
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Temporal aspects of social structure 

Using previously established parameters for sampling period and association, the 

model fit to the standardized lagged association rate that best described the study 

population was of “casual acquaintances”, as defined by Whitehead (1995) (Figure 2.10, 

Table 2.6).   

 

Figure 2.10. SLAR for short-finned pilot whales documented off Hawai„i Island using a 

moving average of 200,000 associations.  Associations are defined as individuals grouped 

within an encounter.  Approximate standard error bars (+/- one standard error) were 

produced by jackknifing on each sampling period.  The best-fit model (casual 

acquaintances, g΄=0.046*e
-0.0002τ

) was obtained using maximum likelihood methods; the 

null association rate is included for reference.   
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Table 2.6. Exponential models fitted to the entire dataset using maximum likelihood and 

binomial loss and used to describe long-term associations (SLAR, g΄) of distinctive 

individuals off the island of Hawai„i.  Associations were defined as individuals grouped 

within an encounter; the best-fit model was that with lowest ΔQAIC value.  

Model Best Fit Parameters QAIC ΔQAIC Model 

Support 

Casual 

Acquaintances 
g΄=0.046*e

-0.0002τ 
2 66004.10 0 Best 

Two Levels of 

Casual 

Acquaintances 

g΄= -0.001*e
-0.807τ 

+ 0.0468*e
-0.0002τ

 4 66008.08 3.98 
Some 

Support 

Constant 

Companions 
g΄= 0.043 1 66039.44 35.34 

No 

Support 

Constant 

Companions 

& Casual 

Acquaintances 

g΄= 0.0423 + 0.016*e
-1.32τ

 3 66042.56 38.46 
No 

Support 

 

Visual inspection of the SLAR curve shows fairly consistent associations over an 

approximate temporal period of 100 days, after which gradual disassociation of the study 

population is evident.  The fact that the SLAR curve continues to fall (and does not 

appear to stabilize over any time lag) supports the description of casual acquaintances.  

However, although the standardized lagged association rate is falling, over a period 

almost of three years the rate has only declined by ~1/4 and not come close to reaching 

the null association rate, indicating the presence of non-random associations.  Following 

the model for casual acquaintances, the typical group size (gregariousness) of the study 

population was estimated at 21.7 individuals (1/a) and associations were estimated to 

persist for 4,264 days (11.68 years)(1/b), which is beyond the scope of the study. 

When using lagged association rates to address the temporal nature of 

relationships it is important to make sure the results are consistent with those obtained 

through other methods such as cluster analyses and basic data analysis (Whitehead 

2008b).  Whitehead (2008b) also stresses the importance of choosing an appropriate 
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sampling period and definition of association that will produce the most accurate 

depiction of the study population.  Basic inspection of the data used to generate the 

SLAR above indicates that some individuals were not casual acquaintances but, in fact, 

maintained strong dyadic associations throughout the duration of the study.  For example, 

over a three year period HIGm0309 was sighted on 16 occasions and HIGm0311 was 

sighted on 17 occasions; both individuals were documented together in 15 of these 

encounters (spanning all three years) and had a dyadic association index of 0.94.  

Individuals HIGm0309 and HIGm0311 were both assigned to Cluster 1 using network 

analysis and hierarchical cluster analysis (see Figure 2.9); further examination of this 

cluster shows a maximum association index range of 0.50-0.97, suggesting heterogeneity 

of associations within the cluster itself but also showing preferential associations 

spanning the duration of the study.  As such, reexamination of the parameters used to 

calculate the lagged association rates is warranted.   

Restricting analysis of temporal relationships to encounters with an estimated % 

group coverage ≥80% removes a fair amount of data (such as all opportunistic encounters 

and directed research encounters prior to 2006 where % group coverage was not recorded 

in the field) but also ensures a more accurate representation of group composition.  

Calculating standardized lagged association rates using the same parameters (sampling 

period of a day and associations defined as individuals grouped within an encounter) but 

restricting encounters to those with coverage ≥80% produced a SLAR curve that 

appeared fairly constant with a best-fit model of constant companions, although there was 

also strong support for casual acquaintances and some support for the other two models 

(Figure 2.11, Table 2.7).  As mentioned, restricting encounters to those with coverage 
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≥80% reduces the number of encounters included in the analysis from 239 encounters 

spanning 2003-2007 to 63 encounters spanning 2006-2007, and is thus much less 

powerful.  However, this restricted data set is also less biased and, therefore, more 

accurately represents the temporal associations within the study population.   

 

Figure 2.11. SLAR for short-finned pilot whales documented off the island of Hawai„i 

(restricted to coverage ≥80%), using a moving average of 30,000 associations.  The best-

fit model was constant companions, g΄= 0.0429; the null association rate is included for 

reference. 
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Table 2.7. Exponential models fitted to the entire dataset using maximum likelihood and 

binomial loss, and used to describe long-term associations of distinctive individuals off 

the island of Hawai„i restricted to coverage ≥80%; the best-fit model was that with lowest 

ΔQAIC value.  

Model Best Fit Parameters QAIC ΔQAIC Model 

Support 

Constant 

Companions 
g΄= 0.0429 1 

4228.0

1 
0 Best 

Casual 

Acquaintances 
g΄=0.0428*e

-.00001τ 
2 

4230.0

0 
1.99 

Strong 

Support 

Constant 

Companions 

& Casual 

Acquaintances 

g΄= 0.0429 + 0.001*e
-1.26τ

 3 
4232.0

0 
3.99 

Some 

Support 

Two Levels of 

Casual 

Acquaintances 

g΄= -0.0012*e
-0.705τ

 + 0.0429*e
-0.000005τ

 4 
4234.0

0 
5.99 

Some 

Support 

Given that temporal analysis of encounters restricted to those with ≥80% 

coverage produced a different model of social structure than encounters restricted to a 

coverage index≥2, it is reasonable to assume that encounters which did not meet the 80% 

criterion may have been incompletely sampled and that some individuals were in fact 

present even though they were not photographically documented.  To test the hypothesis 

that individuals not documented during an encounter were present in the study area the 

definition of groups was altered from individuals documented within the same encounter 

to individuals documented on the same day; a coverage index≥2 was chosen to increase 

the power of the analysis along with a sampling period of a day.  Altering only the 

definition of association resulted in a best-fit model of constant companions (although, as 

with restricting the data to coverage ≥80% there was strong support for casual 

acquaintances and some support for the other two models, as seen in Table 2.8) and a 

SLAR curve with a somewhat cyclical appearance (Figure 2.12).   
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Figure 2.12. SLAR for short-finned pilot whales documented off the island of Hawai„i 

using a moving average of 250,000 associations.   Associations were defined as 

individuals seen on the same day.  The best-fit model (constant companions, g΄= 0.0191) 

was obtained using maximum likelihood methods; the null association rate is included for 

reference. 

Table 2.8. Exponential models fitted to the entire dataset using maximum likelihood and 

binomial loss, and used to describe long-term associations of distinctive individuals off 

the island of Hawai„i using a sampling period of a day and associations defined as 

individuals seen on the same day; the best-fit model was that with lowest ΔQAIC value.  

Model Best Fit Parameters QAIC ΔQAIC 
Model 

Support 

Constant 

Companions 
g΄= 0.0191 1 28021.19 0 Best 

Casual 

Acquaintances 
g΄=0.0193*e

-.00004τ 
2 28022.87 1.68 

Strong 

Support 

Constant 

Companions 

& Casual 

Acquaintances 

g΄= 0.0191 + 0.002*e
-1.30τ

 3 28025.16 3.97 
Some 

Support 

Two Levels of 

Casual 

Acquaintances 

g΄= -0.0019*e
-1.778τ

 + 0.0193*e
-

0.00003τ
 

4 28026.87 5.68 
Some 

Support 

The LIR model indicated that, on average, 136 individuals were in the study area 

at any one time and that an individual remained in the study area an average of 74.3 days, 
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which corresponds to the fairly uniform portion of the SLAR curve for casual 

acquaintances, visually estimated to persist for around 100 days (Figure 2.10).  When the 

SLAR curve used to generate the best-fit model of casual acquaintances is restricted to a 

maximum time lag of 78 days and the models are fit to the new curve, the description of 

the study population changes to that of constant companions (data not presented).  The 

correlation between the estimated length of time individuals remain in the study area and 

the societal description of constant companions suggests that the disassociation indicated 

by the fall in the standardized lagged association rate might be due in part to the 

emigration of certain companions from the study area, rather than the dissolution of 

associations from dyads that remained in spatio-temporal proximity.   

Delineating stable groups 

Initial analysis of the study population using criteria outlined by Ottensmeyer & 

Whitehead (2003) and de Stephanis et al. (2008b) produced eight longitudinally stable 

social units (membership range 2-28, mean=9.75) from 154 core residents.  However, 

when pair-wise association indices were applied to members within each unit, many 

dyadic associations fell below the 0.50 criterion, suggesting that further inspection of unit 

membership was necessary.  Membership remained unaltered by the addition of 

association indices in five of the eight units; two units only contained dyadic associations 

above the 0.50 criterion and three units contained dyadic associations where less than half 

fell below the 0.50 criterion.  The largest social unit identified, Unit B, contained 28 

individuals; 15 key individuals (seen≥8 times in ≥4 years) and 13 constant companions 

(seen≥5 times in ≥3 years).  When Unit B was examined using association indices, two 

distinct levels of association were apparent; the majority of associations between key 
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individuals (0.44-0.87) and all associations between constant companions (0.64-0.97) 

remained above 0.50, while none of the associations between key individuals and 

constant companions reached the 0.50 criterion.  In fact, with the exception of one 

constant companion who failed to meet the 0.50 criterion for either key individuals or 

constant companions, associations between the two ranged from 0.05-0.29.  Therefore, 

despite the fact that all individuals within the unit met the initial criteria for membership, 

following analysis using association indices, Unit B was divided into 2 separate units: 

Unit B1 which contained all key individuals, and Unit B2 which contained all constant 

companions.  Additionally, HIGm0383 was also the only constant companion assigned to 

another unit that contained only one key individual (HIGm0166); further inspection of 

this unit showed a dyadic association of 0.43, below the minimum criteria.  However, 

examination of the sighting history of HIGm0166 suggested that even though it was itself 

a key individual, it met the criteria as a constant companion for Unit B1.  Given that 

HIGm0166 would have been counted as a key individual of Unit B1 if it had met the four 

year criteria (HIGm0166 only met three of the four years, though it should be noted that 

for the fourth year it had been sighted the same day, though in a different encounter, than 

many of the members of Unit B1), this unit was merged with Unit B1 and HIGm0383 

was removed.  It should also be noted that all of the members of B1 were documented in 

a single encounter off Kaua„i in 2005 (see section on Individual Sightings) and were not 

observed in association with any other individuals at that time, suggesting that although 

movement between islands occurs, visitors do not necessarily interact with individuals 

outside of their social network. 
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Although two constant companions initially were assigned to Unit C, all of their 

dyadic association values fell below the 0.50 criterion (0.11-0.31) and so were removed; 

however, the same two constant companions were successfully assigned to Unit H.  Unit 

C contained only one additional individual (HIGm0211) in which >50% of the dyadic 

associations fell below 0.50.  Rather than removing HIGm0211 from the analysis, Unit C 

was divided such that all individuals that had dyadic associations with HIGm0211 ≥0.50 

were placed in sub-unit C1 and all individuals with dyadic associations ≤0.50 were 

placed in sub-unit C2.  Unlike Unit B, all dyadic associations within Unit C, with the 

exception of HIGm0211, were above the 0.50 criterion; therefore, although subdivision 

of this unit resulted in subunits with higher average dyadic associations than the unit as a 

whole, the subdivision remains somewhat tenuous.  Final unit delineation (see Table 2.9) 

resulted in nine social units (membership range 5-16, mean=10.44, SD±3.75).   

Table 2.9. Longitudinally stable social units of short-finned pilot whales off the island of 

Hawai„i constructed from shared sighting histories and composed of key individuals and 

constant companions.  

Unit 
# Key 

individuals 

# Constant 

companions 

Total # unit 

members 

Association 

Index range 

Mean Association 

Index  

A 2 3 5 0.83-0.93 0.897 

B1 16 0 16 0.44-0.87 0.618 

B2 0 12 12 0.64-0.97 0.827 

C1 8 0 8 0.50-0.91 0.766 

C2 9 0 9 0.65-0.95 0.807 

E 2 5 7 0.76-0.96 0.878 

F 2 7 9 0.43-0.83 0.676 

G 13 2 15 0.43-0.97 0.687 

H 11 2 13 0.36-0.96 0.689 

Age/sex classes were visually estimated for individuals within each unit (Table 

2.10) using terms and criteria outlined in the section on Age/Sex Classification.  Although 

qualitatively assigning age and sex descriptors to individuals is somewhat subjective, 
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broad inferences may still be drawn about the overall structure of the social unit.  Adult 

males were identified in eight of the nine social units; notably, the social unit without any 

adult males (Unit B1) contained almost twice as many calves and juveniles as the other 

social units (Table 2.10).  More than half of the social units did not have individuals 

observed in association with younger individuals such as calves or juveniles.  Adult 

females were only present in four of the nine social units; however, the criteria used to 

define adult females was more restrictive than for adult males, suggesting that some of 

the individuals simply listed as “adults” were likely adult females without younger 

individuals in close association.     

Table 2.10. Visually estimated age/sex classes of individuals within social units; see 

section on Age/Sex Classification for a review of terms and criteria.   

Unit 

Total # 

unit 

members 

Adult 

Male 

Adult 

Female 
Adult 

Sub-

Adult 
Juvenile 

Calf (C), 

Juvenile (J), 

*not included in 

Units 

Est. total 

Unit size 

A 5 1 - 3 1 - - 5 

B1 16 - 5 9 2 - 4 (J), 1 (C) 21 

B2 12 3 - 8 1 - - 12 

C1 8 3 - 4 1 - - 8 

C2 9 1 - 5 3 - - 9 

E 7 2 -- 5 - - - 7 

F 9 1 2 4 2 - 2 (J) 11 

G 15 1 3 11 - - 3 (C) 18 

H 13 2 2 6 1 2 1 (J) 14 

*The number of calves and juveniles was estimated for each unit based on close, 

consistent association with a member of the unit thought to be an adult female. 

It should be noted that 59 core residents were not allocated to social units since 

they did not share sufficient sighting histories with any key individuals, although it is 

possible that these individuals may in fact form stable social units with each other and 

might emerge as key individuals as more data are collected.  A social network diagram 

using a spring-embedding algorithm to depict closeness between core residents, residents 

and visitors showed visitors mainly confined to the outer fringes of the main component 
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and residents clustered in interior portions of the graph between dense clusters of core 

residents (Figure 2.13).  Removal of residents and visitors from the main component of 

the social network diagram provided a more direct comparison of core residents allocated 

to various social units with those left unallocated; the majority of unallocated core 

residents remained clustered together, further suggesting that they might constitute new 

social units (Figure 2.14). 

 

Figure 2.13. Social network diagram depicting all distinctive individuals documented off 

Hawai„i Island that link back to the main social network.  Visitors are depicted as black 

triangles, residents are depicted as gray squares and core residents are depicted as white 

circles; individuals assigned to units are labeled with their unit designation and core 

residents not allocated to a social unit are labeled “NA”.  
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Figure 2.14. Social network diagram depicting core residents documented off Hawai„i 

Island that link back to the main social network: Unit A (red circle), Unit B1 (black plus 

sign), Unit B2 (light green up triangle), Unit C1 (gray hatched box), Unit C2 (light blue 

down triangle), Unit E (pink boxed-circle), Unit F (dark green diamond), Unit G (yellow 

square) and Unit H (orange inverted triangles).  Core residents not allocated to a social 

unit are shown as dark blue squares. 

Socials units versus cluster analysis 

In order to compare membership profiles between social units delineated using 

the key individual/constant companion criteria and clusters generated by maximizing 

modularity using the eigenvector-based method from network analysis, the original 

dendrogram generated from all distinctive individuals seen on more than four occasions 

(see Figure 2.9) was modified such that individuals that did not meet the minimum 
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criteria for key individuals/constant companions were grayed-out (see Figure 2.15).  

Removing the individuals that did not fit the key individual/constant companion criteria 

resulted in the complete elimination of four of the nine clusters and partial elimination of 

two additional clusters; one cluster remained completely intact and two clusters only lost 

one individual.  It should be noted that one of the remaining clusters (Cluster 1) 

corresponded exactly to Unit B before it was subdivided in Units B1 and B2.  
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To further illustrate the difference between social units established using sighting 

histories and clusters established using eigenvector methods, a dendrogram was 

constructed using only key individuals and constant companions; individuals were then 

assigned to both social units and clusters (Figure 2.16).  As mentioned above, key 

individuals and constant companions were divided into a total of nine social units using 

longitudinal sighting histories; application of the eigenvector-based method for 

community division resulted in six clusters, three that corresponded exactly to previously 

established social units and three that were each formed from merging two social units.  

When sub-cluster membership was compared to unit membership, results were very 

similar: sub-clustering successfully predicted unit membership with the exception of 

Units C1 and C2, which were combined into a single cluster.   

Several features of sub-clusters were similar to those of units; sub-cluster size 

ranged from eight to 18 individuals (mean=12.1, SD±3.7) and nine of the 10 sub-clusters 

had an overall average association index ≥0.50 (range: 0.48±0.14-0.84±0.02).  However, 

unlike unit membership which required that the majority of dyadic associations for each 

member be≥0.50, four of the 10 sub-clusters contained individuals (range 1-4) that failed 

to meet the ≥0.50 criterion used to determine unit membership.  Dyadic associations 

within sub-clusters were also more heterogeneous than those within units; minimum 

dyadic association indices within sub-clusters ranged from 0.06 to 0.76 with five of the 

10 sub-clusters having a minimum dyadic association index ≤0.50.  It should be noted for 

the clusters in which within-cluster division was not supported, that, although all 

minimum association indices were below 0.50 (range 0.29-0.46), the average association 

index for each cluster was ≥0.50 (range 0.64-0.78) and there were no dyadic associations 
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that failed the criteria for unit membership, suggesting the clusters would meet unit 

membership criteria if they had sufficient sighting histories. 
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Discussion 

Residency, site fidelity and differential patterns of habitat usage off the island of Hawai‘i 

Individual short-finned pilot whales documented off the island of Hawai„i 

exhibited dramatically different levels of site fidelity over the course of the study, 

suggesting heterogeneous usage of the study area.  Individuals demonstrating strong, 

long-term fidelity to the area (such as one individual documented on 27 occasions in all 

five years of the study) indicated the presence of a core resident population off the 

leeward side of Hawai„i Island.  However, individuals infrequently re-sighted also 

demonstrated some degree of site fidelity to the island and thus were considered 

residents, although unlike core residents their core range likely did not overlap 

substantially with that of the study area.  As would be expected given the definitions of 

residency, the majority of core residents (87.7%) were seen in ≥three seasons over the 

course of the study, suggesting year-round presence in the study area, while only 13.3% 

of residents were documented in three or more seasons.  Although measuring the length 

of time all individuals surveyed spent in the study area was not practical given the nature 

of the field research conducted, repeated identification of the same individuals over the 

course of a field project was indicative of the fact that some individuals remained 

associated with the leeward side of the island for an extended period of time (rather than 

just passing through), further supporting residency to the area. 

Labeling individuals as core residents or residents did not imply that they never 

left the study area, however, and instead suggested that the majority of their time was 
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spent off the island of Hawai„i.  The lagged identification rate estimated that, on average, 

individuals spent 74.3 days in the study area and 56.6 days outside of the area, suggesting 

that individuals regularly traveled over a larger range than that covered during vessel 

surveys (Table 2.1).  Indeed, individuals which were satellite tagged off the leeward side 

of the island of Hawai„i have been documented moving north of the study area into the 

Alenuihaha Channel separating the northern tip of the island of Hawai„i from Maui 

(Schorr et al. 2007), and individuals tagged in 2008 generally remained associated with 

the island (Baird et al. 2008c).  Additionally, inter-island movements of short-finned pilot 

whales have been occasionally documented between the islands of Hawai„i and Kaua„i 

using photo-identification, though such instances are infrequent.  Given the paucity of 

inter-island re-sightings, it is more likely that short-finned pilot whales frequent all sides 

of the island of Hawai„i (and are thus not present for many surveys).  

Individuals seen only once were encountered in all seasons and in all years; 

however, 64.3% of the individuals that were only seen on a single occasion were first 

documented during the last two years of the study, indicating that there was a steady 

influx of new (i.e., previously undocumented) individuals into the area over the period of 

the study.  Although the probability of these individuals being re-sighted differed 

depending on the point in the study when they were first identified (with those identified 

earlier being more demonstrative of individuals having no fidelity to the area), the fact 

that some individuals were not encountered until the latter portion of the study, despite 

significant survey effort, is also informative.  However, it is important to note that 

individuals labeled visitors that appear within social clusters containing residents or core 
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residents are likely ones that have only recently entered the marked population, or are 

members who died before the end of the study, thus limiting the number of times they 

could be documented.  

With the exception of a single individual, all core residents were first identified in 

2005 or earlier; the initial year sighted as presented here is conservative as many early 

sightings of core residents, residents and visitors were removed from the analysis due to 

photo quality restrictions.  In contrast, the initial year sighted for visitors spanned the 

length of the study period with 36.6% of visitors first documented in or before 2005; the 

fact that more than a third of initial sightings of visitors were contemporary to those of 

core residents further emphasizes the differing levels of site fidelity and patterns of 

habitat usage exhibited by members of the study population.  Despite unequal survey 

coverage, individuals were encountered and re-sighted in all months with effort.   

Although not referred to as site fidelity, Heimlich-Boran (1993) reported a similar 

range of re-sighting rates for short-finned pilot whales off the island of Tenerife, with the 

number of sightings per individual ranging between one and 28 (mean=5.27, SE±0.27) 

over a 22-month study.  Individuals in the Tenerife study population were considered 

resident if sighted more than once or in the company of other residents, ignoring any 

temporal components to an individual‟s sighting history. As such, direct comparisons 

regarding resident and visitor status cannot be made between the Heimlich-Boran (1993) 

study and the current study; however, it is apparent that new individuals were being 

identified throughout the study period and that some individuals off Tenerife exhibited a 

strong degree of residency.  The residency documented in a portion of the study 
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population off the island of Hawai„i is in sharp contrast to habitat usage of long-finned 

pilot whales off the coast of Nova Scotia, which were estimated to remain in the study 

area for less than a day (Ottensmeyer 2001).   

Preliminary evidence of population structure 

Following Whitehead (2008b), a population is defined as a group of individuals in 

which the majority of interactions occur with other members within, rather than outside 

of, the group.  The behaviorally-based definition of population introduced here is 

admittedly different from the geopolitical boundaries typically used to describe stocks for 

management purposes, and also does not take into account genetic or reproductive 

isolation commonly used to delineate population boundaries; however, in the absence of 

genetic information, association patterns may inform management decisions (e.g., Bigg 

1982).  Although additional research is needed to fully characterize the population 

structure of short-finned pilot whales in the Hawaiian archipelago, analysis of association 

patterns presented here in concert with current knowledge of movement patterns and 

habitat usage suggest the presence of both a demographically-independent island-

associated population and an offshore or pelagic population off the island of Hawai„i.   

The high degree of residency and site fidelity used to define core resident individuals off 

the island of Hawai„i, combined with a lack of inter-island re-sightings, suggest core 

residents represent a separate, insular population.  Preliminary evidence of multi-year 

within-island re-sightings of short-finned pilot whales off other islands within the main 

Hawaiian Islands (Baird et al. 2006, Baird et al. 2011), combined with a lack of inter-

island re-sightings, provide evidence of site fidelity to each island and support the 
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existence of additional demographically-independent island-associated populations or 

sub-populations within the archipelago.  The existence of multiple populations is evident 

for several species of odontocetes in the main Hawaiian Islands; insular and offshore 

populations have been described for false killer whales (Baird et al. 2009), and 

demographically independent island-associated populations have been described for 

common bottlenose dolphins (Baird et al. 2009, Martien et al. 2011), melon-headed 

whales (Aschettino et al. 2011), pantropical spotted dolphins (Courbis 2011) and spinner 

dolphins (Andrews et al. 2010).   

Although community is a term commonly used in studies of social structure to 

describe social groupings of individuals, the lack of a consistent definition in the 

literature makes delineating communities in the core resident population more difficult 

and of questionable utility.  For example, Whitehead (2008b) considers a community to 

be a group of behaviorally-isolated individuals where the majority of individuals 

associate with each other.  In reference to fish-eating “resident” killer whales, Bigg et al. 

(1990) defines a community as a group of individuals in occasional association that 

occupy the same area.  Under Bigg‟s definition, the island of Hawai„i core resident 

population would also be considered a community; however, given the small proportion 

of dyadic associations that have been documented, the core resident population would 

not be considered a community under Whitehead (2008b).  Communities have commonly 

been described for species with a fission-fusion type of social structure, such as 

bottlenose dolphins (e.g., Wells 1991), that lack strong social differentiation.  Even 

bottlenose dolphin communities differing from the typical fission-fusion model (Lusseau 
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et al. 2003, Augusto et al. 2011) maintain associations with the majority of community 

members without clear community division.  Long-finned pilot whales in the Strait of 

Gibraltar have been labeled a community by de Stephanis et al. (2008b) and their social 

structure likened to that of fish-eating “resident” killer whales in the temperate coastal 

eastern North Pacific; however, as the proportion of the study population documented in 

association has not been reported, it must be assumed that the majority of individuals 

were in occasional association based on the report of large temporary aggregations of 

several “pods.”  Therefore, while the core resident population could arguably be 

considered a community following Bigg et al.‟s (1990) definition, the ambiguity 

surrounding the definition cautions against its usage here.  

Depth distribution and movements: potential influences of prey abundance 

Although detailed knowledge of preferred prey of short-finned pilot whales in the 

main Hawaiian Island is lacking due to the paucity of strandings in the area, and 

subsequent absence of stomach content analysis (Mazzuca et al. 1999), tattered squid 

remains occasionally observed during encounters with short-finned pilot whales off the 

island of Hawai„i suggest cephalopods represent a portion of their diet (Baird, pers. 

comm.).  Additionally, cephalopods have been found in the diet of sperm whales and 

melon-headed whales (representing ten families and four families, respectively) in 

Hawai„i (Clarke & Young 1996).  While bathymetric challenges around the main 

Hawaiian Islands limit the sampling of benthic adult cephalopods necessary to measure 

distribution and diversity, knowledge of paralarvae can inform adult spawning 

characteristics (Bower et al. 1999).  The most diverse paralarval assemblages of squid 
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documented to date occur off the main Hawaiian Islands (Bower et al. 1999); enhanced 

feeding conditions are thought to influence increased spawning near the islands by 

bottom, nearshore and even oceanic species.   

Short-finned pilot whales were observed throughout the study area; however, 

sighting densities were greatest between 1,500 and 2,500 m (Figure 2.3), corresponding 

to areas of steep bathymetric relief generally associated with high concentrations of 

cephalopods (Boyle & Rodhouse 2005).  Short-finned pilot whales off the island of 

Tenerife showed a significant preference for areas of steep slope and high relief, 

corresponding to areas of upwelling along the 1,000 m depth contour (Heimlich-Boran 

1993); as with the current study, short-finned pilot whales were encountered in all months 

of the study, indicating that prey concentrations were likely sufficient to sustain 

individuals in that area year-round, although directed studies of prey distribution and 

abundance are lacking.   

Despite effort extending up to 70.8 km from shore (12.9% in water deeper than 

3,000 m), short-finned pilot whales were never observed more than 25 km (Figure 2.2) 

from shore, or in water depths greater than 3,000 m (Figure 2.3), suggesting a strong 

association with the island.  In contrast, short-finned pilot whales tagged off the island of 

O„ahu in October 2010 demonstrated dramatically different movement patterns and 

degrees of site fidelity; individuals tagged with a group that had been previously been 

documented off O„ahu and Lana„i remained strongly associated with the tagging area and 

the slope for the duration of tag transmission (maximum=228 days), while individuals 

tagged with a group that had not previously been documented did not remain associated 
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with the tagging area or slope, instead ranging beyond the Hawaiian EEZ (Baird et al. 

2011).  Such disparate movement patterns and depth preferences observed for individuals 

tagged off the islands of O„ahu and Kaua„i further indicate differential patterns of habitat 

usage and suggest that island-specific resident and visitor communities may exist off 

other islands within the Hawaiian archipelago. 

Distinctiveness 

A population-wide distinctiveness estimate for the current study of 80.5% is 

substantially higher than all of the other pilot whale studies reviewed here, with the 

possible exception of the Heimlich-Boran (1993) study (see Appendix C).  While it is 

possible that the Hawaiian population of short-finned pilot whales are more distinctive in 

general, differing calculation methods and the advantage of digital high-resolution 

photography are likely partially responsible, especially when considering the Shane & 

McSweeney (1990) study.  Although higher than the other pilot whale studies reviewed 

here, the proportion of the study population estimated to be distinctive is likely 

conservative as slightly distinctive individuals have been repeatedly (and in some cases 

consistently) re-sighted between years using good and excellent-quality photos, as have 

individuals with clean fins. In some cases, match confirmation required additional 

markings beyond the leading or the trailing edge of the dorsal fin, such as saddle 

pigmentation patterns or persistent scars; however, scarring was only used to aid in 

confirmation of a match, and never to deny a match since it was not known which scars 

were ephemeral.   
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Following similar methodologies, the proportion of the study population 

considered distinctive was greater than many other species in Hawai„i such as melon-

headed whales (median=61.8%, CV=0.06, n=6) (Aschettino et al. 2011) and pygmy killer 

whales (mean=73.7%, SD±22.8%, n=79) (McSweeney et al. 2009), and may indicate 

more frequent or aggressive interactions with predators or conspecifics. 

Mark changes 

The rate of mark change (once every 2.9 to 3.5 years) for re-sighted short-finned 

pilot whales in the current study was higher than that of many other Hawaiian species 

(Baird et al. 2008b, McSweeney et al. 2009, Aschettino et al. 2011) (see also Appendix 

B).  This could either indicate a real difference in the rate of injury between species, or 

reflect the ability to detect mark changes due to high re-sighting rates of short-finned 

pilot whales.  Given a high rate of mark change within the study population, failure to 

recognize mark-change events could have a significant impact by altering observed 

association patterns and artificially inflating the catalog.  In particular, mark changes in 

non-distinctive individuals such as calves have a greater probability of not being 

recognized (or reconciled), and will artificially truncate the sighting record and 

association history of a mother/calf pair.  While the majority of mark changes should be 

recognized by an experienced photo-identification matcher, dramatic mark-change events 

significantly alter the appearance of the dorsal fin and carry a greater potential for missed 

matches; such mark changes may be impossible to reconcile with previous sightings and 

should always be acknowledged as a limitation of photo-identification catalogs.  

Dramatic mark-change events were documented on several individuals in the study 
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population and, in such cases, secondary characteristics such as pigmentation patterns 

were used to confirm matches.  However, although it is acknowledged that missed 

matches might still exist in the study population, the ability to use association patterns to 

predict the presence of certain individuals increases the probability of identifying an 

individual that has undergone a dramatic mark-change event.   

Although not quantitatively analyzed here, the presence of a saddle patch and 

post-orbital eye blaze were noted for several individuals within the study population.  

Providing opportune lighting conditions, the saddle patch was used in certain instances to 

offer additional confirmation of a match; however, the post-orbital eye blaze was never 

used as a diagnostic aid.  Similar to the short-finned pilot whales documented in the 

current study, and unlike those off Japan (Yonekura et al. 1980), the population off 

Tenerife was reported to have non-distinctive saddle patches (Heimlich-Boran 1993), 

though they did have distinct post-orbital eye blazes.  Shane & McSweeney (1990) noted 

that the saddle patterns of the Hawaiian population are only truly visible underwater; 

while an obvious contrast between pigmentation patterns was evident in underwater 

photos from the current study, saddle patterns were also clearly defined above the surface 

with excellent lighting conditions.  Although Auger-Méthé & Whitehead (2007) suggest 

that adding saddle patch identification in the photo-identification protocol would double 

the proportion of individuals identified in the Nova Scotia population, the faint 

appearance of the saddle patch in the Hawaiian population, requiring excellent lighting 

conditions to be seen, cautions against its use as anything other than a secondary 

matching aid.  
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The diversity of mark types documented in the study population imply a number 

of different sources.  Possible causes of disfigurement include: tooth-rake marks caused 

by interactions with conspecifics, circular or oval scars from cookie cutter sharks, large 

scarring patterns suggesting bite impressions from predators such as sharks and possibly 

killer whales, deep depressions in the back and peduncle from anthropogenic sources 

such as boat propellers, and all or part of the dorsal shaved off indicating fishing line 

injuries.  The frequencies with which fresh and healed wounds from cookie cutter sharks 

and tooth-rake marks from conspecifics are seen on individuals off Hawai„i indicate that 

injurious interactions with predators and other members of the population are fairly 

commonplace.  For further discussion of mark changes, see Appendix B.   

Characteristics of the individual: examining differences in association patterns and 

gregariousness 

Analysis of short-finned pilot whale association patterns off the island of Hawai„i 

using both quantitative techniques and social network analysis indicated a well-

differentiated society demonstrating strong long-term and short-term preferential 

associations.  The strength of association indices found among members of the study 

population, as indicated by an average maximum dyadic association index of 0.91, 

suggests the importance of strong inter-individual bonds within the population.  Indeed, 

strong dyadic associations were not prescriptive homogeneous associations; despite the 

fact that all individuals within the study population were documented in the same area 

(with 71.9% linking to the main social cluster, see Figure 2.5), individuals were only 

documented in association with a small fraction of possible associates.  Further analysis 
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indicated that few casual associations existed and that the majority of associations were 

preferential in nature (Table 2.5).  Similarly, preferential associations were found among 

long-finned pilot whales off the coast of Nova Scotia (Ottensmeyer & Whitehead 2003) 

and in the Strait of Gibraltar (de Stephanis et al. 2008b), although information on 

differing levels of individual gregariousness was not available from either study.  

Ottensmeyer (2001) also noted that the majority of possible associations between 

individuals were never documented (as is the case with the current study); however, 

unlike the current study, the maximum association index for some members of her study 

population was low, suggesting no consistent associates.  Ottensmeyer (2001) reasoned 

that strong associations may still exist for those individuals with low maximum 

association index values, and it seems reasonable given photographic limitations that not 

all potential associates were documented (see Appendix C).  

Individuals within the study population also demonstrated differences in 

gregariousness, with some individuals consistently found in large or small groups.  

Reasons for the differences in individual sociality are unknown and could be associated 

with specific age/sex classes (as found in wild chimpanzees; Pepper 1999), or indicative 

of relative social standing within the population.  Individuals included in the analysis 

were largely thought to belong to the adult or sub-adult age class; however, age class 

estimation was based on qualitative rather than quantitative methods.  From a logistical 

perspective, individual differences in gregariousness can negatively impact an 

individual‟s sighting history, as larger groups probably have a somewhat higher 
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probability of being spotted in the field.  Thus, it is possible hyper-social individuals have 

a higher probability of being documented in the field than less social individuals. 

Detecting community structure: hierarchical cluster analysis and temporal methods 

Social network analysis supported the division of the study population into nine 

socially meaningful clusters of varying size and association strength.  The mean 

association index within clusters (AI=0.48±0.20) was similar to the 50% criterion used to 

designate pod membership in killer whales in the coastal eastern North Pacific (Bigg et 

al. 1990), and thus could be indicative of persistent social groups.  However, although the 

mean number of individuals assigned to each social cluster was similar to the mean group 

size estimated in the field, within-cluster mean association indices ranged from 0.27 to 

0.78, suggesting that social clusters (and thus groups encountered in the field) were 

broadly representative of preferential associations among specific individuals, but were 

not necessarily indicative of strongly cohesive groups within the study population.  Given 

the wide range in membership and association strengths among clusters, it is likely that 

some social clusters were aggregations of one or more smaller more cohesive groupings.  

Indeed, sub-clustering was only supported for the social clusters that had a mean 

association index <0.50; resulting sub-cluster membership (range 8-18) was smaller than 

the mean group size estimated in the field, and mean association indices ranged from 0.48 

to 0.84, indicating that clusters with a mean association index <0.50 likely contained 

multiple, smaller cohesive social groups.  

When compared to social units constructed using shared sighting histories rather 

than social network analysis, mean membership and association index ranges were 
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similar for both sub-clusters and for clusters where sub-clustering was not supported.  

However, although sub-clusters were similar in size and membership to units, they also 

contained peripheral individuals that only strongly associated with some members of the 

sub-cluster and maintained weak associations with other members, suggesting sub-

clusters are slightly less conservative than units.  Whether peripheral individuals 

represent new additions to the social cluster or long-term associates with newly-acquired 

markings that have just entered the marked population (such as calves or juveniles) is not 

known, and will require future research effort.  The results suggest that considering the 

temporal aspects of social structure is important in predicting longitudinally-stable social 

units; however, in the absence of unit information, sub-clusters may serve as a reasonable 

proxy for determining cohesive social groups.       

One of the limitations of the current analysis is that by restricting analyses only to 

distinctive individuals, potential associations between unmarked individuals (such as 

most calves, juveniles and some sub-adults) and the rest of the study population are not 

taken into account.  Short-finned pilot whales were frequently encountered off the island 

of Hawai„i in groups of mixed sex and age (but see Table 2.10), suggesting that social 

cluster and social unit sizes presented here are likely conservative and membership is 

biased toward older individuals.  Considering the overall distinctiveness of the study 

population, it is possible that true mean social unit membership is closer to 12.5 

individuals.  Given the discrepancy between the mean group size encountered in the field 

and the mean cluster, sub-cluster and unit sizes, groups encountered likely represent 

multiple social units in temporary association.  This assumption has also been suggested 
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by Ottensmeyer & Whitehead (2003) for units of long-finned pilot whales, but is contrary 

to one made by de Stephanis et al. (2008b), which is that groups encountered in the field 

are most likely representative of pods akin to those documented in killer whales in the 

coastal eastern North Pacific.  As such, de Stephanis et al. (2008b) cited similar mean 

group sizes between long-finned pilot whales in the Strait of Gibraltar (mean=14, SD±18) 

and pods of fish-eating killer whales in the coastal eastern North Pacific (mean=12, 

range: 3-50; Bigg et al. 1990); however, although units satisfied the criterion for pods, it 

was unclear whether groups encountered in the Strait were also behaviorally consistent 

with killer whale pods (i.e., spent ≥50% of their time in association).  Mean group sizes 

were roughly 25% higher in the current study and off Nova Scotia (mean=20.7, SD±9.6; 

mean=20, SD±18, respectively) than the Strait of Gibraltar study, and could indicate 

differences in social structure or ecology between populations.   

Although the spatial distribution of individual short-finned pilot whales within an 

encounter was not documented in the field, preliminary evidence from the timestamp, 

nearest neighbor, and sequence of photos taken suggests that within-encounter clustering 

of social groups occurs, and should be considered in future analyses.    

Detecting community structure: comparisons to other studies 

  Despite more than a three-fold difference in mean unit size between the current 

study and Ottensmeyer & Whitehead‟s (2003) study (mean=10.44, SD±3.74; mean=3, 

SD±1.3, respectively), when scaled by the proportion of non-distinctive individuals 

within each study population this difference decreases substantially (mean=12.5; 

mean=8.0 (95% confidence intervals of the mean (8.0-8.9), (7.7-8.6), respectively).  
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Ottensmeyer & Whitehead (2003) further used the point at which the SLAR curve 

stabilized to determine the proportion of individuals present in a group that are actually 

long-term companions; when scaled again by the proportion of distinctive individuals in 

the study population, the unit size was estimated to be 11-12 individuals, similar to the 

mean unit size estimate from the current study.  However, while multiple SLAR curves 

were generated for the current study, none demonstrated a period of decline followed by 

stabilization, preventing application of the methodology used by Ottensmeyer & 

Whitehead (2003) to generate unit size; as such, unit size comparisons between the two 

studies should be viewed cautiously.  Mean unit size was similarly lower in the Strait of 

Gibraltar study (de Stephanis et al. 2008b) than in the current study, although limited 

inferences can be drawn as results were not scaled by the proportion of distinctive 

individuals.  Mean association indices for social units in the Strait of Gibraltar study 

ranged from 0.39±0.04 to 0.87±0.04 and were similar to the current study; de Stephanis 

et al. (2008b) further distinguished between units with high mean association indices 

(presumably units with AIs≥0.76±0.07) as single “line units,” and those with lower mean 

association indices (presumably units with AIs≤0.63±0.00) as consisting of multiple line 

units.  Unfortunately, the only other multi-year study on short-finned pilot whales 

(Heimlich-Boran 1993) utilized different methodology and cannot be directly compared 

to the current study; however, following assumptions that 85% of the study population 

was considered distinctive and that clustering methods yielded similar results, 

Ottensmeyer & Whitehead (2003) estimated that the majority of Heimlich-Boran‟s 

(1993) “pods” contained 11 or fewer individuals. 
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Interpreting the social and ecological significance of clusters and units  

Results presented here indicate that units represent persistent social entities; 

however, the social and ecological significance of these units remains unclear.  As 

mentioned earlier, previous studies have suggested that pilot whales may exhibit natal 

group philopatry, a type of stable matrilineal social structure implying relatedness 

between members of both sexes within the natal group (Heimlich-Boran 1993, 

Ottensmeyer & Whitehead 2003, de Stephanis et al. 2008b).  Short-finned pilot whales in 

the current study demonstrated a strong degree of social cohesion characteristic of pods 

of killer whales in the coastal eastern North Pacific; however, genetic relatedness of unit 

members in Hawai„i is unknown.  While it is tempting to infer genetic relatedness among 

Hawai„i unit members based on similarities in group composition (i.e., groups of mixed 

age and sex) and association strength (i.e., in association more than 50% of the time) to 

that of killer whale pods, even mother-calf pairs can only cautiously be assumed. 

Although groups encountered in the field were often of mixed age and sex, 

qualitative assignment of age and sex to individuals within each social unit indicated that 

there may be some segregation between adult males and female/calf pairs, or that adult 

males may disperse from their natal groups (Table 2.10).  More than half of the social 

units did not have calves or juveniles documented in association with an adult; however, 

the majority of social units where calves and juveniles were present also contained adult 

males, suggesting social dynamics differ among units.  The largest social unit defined in 

the study, Unit B1, was the only unit where adult males were not identified; conversely, 

Unit B1 also contained almost twice as many female/calf pairs as the other units.  In 
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discussing the structure of B1 it is important to note that Units B1 and B2 were initially 

defined as a single unit; however, pronounced differences in association levels within this 

unit supported unit division.  In contrast to Unit B1, three of Unit B2‟s members were 

thought to be adult males and no adult females, juveniles or calves were identified in the 

unit.  Thus, while Units B1 and B2 both appear to exhibit some degree of within-unit age 

and sex-based segregation, they also maintain inter-unit associations, suggesting bonds 

between units are socially important.  The inter-unit association between Units B1 and B2 

is supported by the fact that multiple units have been documented in association and may 

help explain why individuals off the island of Hawai„i were commonly observed in 

groups of mixed sex and age.  

The age and sex-based segregation observed within several of the units in Hawai„i 

is seemingly in contrast to a study of long-finned pilot whales in the Strait of Gibraltar, 

where five of the six units for which the sex of some unit members was known contained 

both males and females (de Stephanis et al. 2008b).  Additionally, although no 

information was provided regarding the possible age of the genetically-sexed individuals 

within the Strait of Gibraltar (or the presence of calves or juveniles within units), male-

female associations were found to be the most common (de Stephanis et al. 2008b).  

Differences in age and sex-based segregation may indicate a difference between the 

social structure of long-finned and short-finned pilot whales, or may simply indicate a 

difference among populations.    

Genetic analysis of relatedness within grinds of long-finned pilot whales in the 

Faroe Islands identified multigenerational matrilines (membership range: 2-27, 
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mean=4.5, n=11), with mother-calf relationships documented between both adult males 

and adult females, providing some evidence for natal group philopatry (Fullard et al. 

2000).  Based on the assumption by Fullard et al. (2000) that the size of the matrilines 

identified in the Faroese grinds would likely increase with the identification of shared 

ancestors (by allowing related matrilines to be joined into extended matrilines), 

Ottensmeyer & Whitehead (2003) suggested that units of long-finned pilot whales in 

Nova Scotia represented extended matrilines.  Similarly, de Stephanis et al. (2008b) 

suggested that line units identified in the Strait of Gibraltar study population represented 

stable matrilines comparable to those found in within pods of killer whales in the coastal 

eastern North Pacific (Bigg et al. 1990).   

Although complimentary genetic and behavioral studies have not been conducted 

on the same pilot whale population as they have with killer whales (Bigg et al. 1990, 

Ford et al. 2011), genetic evidence of natal group philopatry occurring in long-finned 

pilot whale populations in both the northern and southern hemispheres (Amos et al. 

1993a, Fullard et al. 2000, Oremus 2008), and behavioral evidence of persistent social 

groups of mixed age and sex in long-finned (Ottensmeyer & Whitehead 2003, de 

Stephanis et al. 2008b) and short-finned pilot whales (Heimlich-Boran 1993), provide 

preliminary evidence that long-finned pilot whales exhibit natal group philopatry.  

However, the suggestion by Amos et al. (1993) and Fullard et al. (2000) that grinds of 

long-finned pilot whales represent an extended matrilineal group demonstrating persistent 

associations similar to pods of killer whales in the coastal eastern North Pacific has been 

questioned (Connor 2000, Ottensmeyer & Whitehead 2003, Oremus 2008).  Indeed, 
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Oremus (2008) identified multiple unrelated matrilines within stranded groups of long-

finned pilot whales in New Zealand; while differences in study populations and possible 

inherent differences in social structure cannot be ignored, the use of microsatellite 

markers facilitated direct comparisons between New Zealand and portions of the Faroese 

Islands study.  As such, Oremus (2008) suggested that while natal group philopatry has 

been demonstrated within matrilines, multiple matrilines in association do not necessarily 

indicate relatedness.  This is an important distinction between pilot whale social 

structure(s) and that of killer whales in the coastal eastern North Pacific, and may 

indicate an intermediate social structure between sperm whales and killer whales. 

Implications for conservation and management 

Short-finned pilot whales in Hawaiian waters are currently managed as a single 

stock and it is not known whether population subdivision exists (Carretta et al. 2011).  

Shipboard (Barlow 2006) and aerial surveys (Mobley et al. 2000) have indicated that 

short-finned pilot whales are abundant throughout the main Hawaiian Islands, however, 

these abundance estimates assume that the whales surveyed exist as a single population, 

rather than multiple independent demographic units, as has been found for several species 

of odontocetes in Hawai„i (Baird et al. 2008a, b, 2009, McSweeney et al. 2009, 

Aschettino et al. 2011, Courbis 2011, Martien et al. 2011).  As Baird et al. (2008a) 

suggested, applying abundance estimates from the entire Hawaiian EEZ to portions of the 

population potentially demonstrating restricted ranges may result in an underestimate of 

the level of anthropogenic risks affecting that population; thus, detailed knowledge of 

population structure is necessary to inform management decisions. The presence of a 
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small, core resident population of short-finned pilot whales off the island of Hawai„i 

could therefore indicate an elevated risk to anthropogenic threats such as high levels of 

commercial and recreational vessel traffic, targeted tourist activities such as dolphin 

watching and swim-with-dolphin programs (Danil et al. 2005), and increased exposure to 

mid-frequency naval sonar (Southall et al. 2006).  Additionally, the island of Hawai„i has 

the highest level of commercial and sports troll fisheries in the main Hawaiian Islands 

(Baird et al. 2008a), and short-finned pilot whales have been observed being either 

mildly or seriously injured (as defined by Anderson 2008) in deep-set longline (DSLL) 

fisheries operating within and outside of the Hawaiian EEZ on eight occasions between 

2004 and 2008 (McCracken 2009, Forney 2010, Carretta et al. 2011).  Although only one 

of the DSLL injuries occurred within the Hawaiian EEZ during the years of observation 

effort (2004-2008), observer coverage ranged from 20% to 28%, suggesting the number 

of individuals taken in DSLL fisheries is higher.  

 In addition to management concerns associated with individuals demonstrating 

restricted ranges, Williams & Lusseau (2006) noted the importance of considering social 

structure when formulating effective management plans.  Using social network analysis, 

Williams & Lusseau (2006) simulated removal of random and targeted individuals from 

the coastal eastern North Pacific population of killer whales known to demonstrate natal 

group philopatry.  Results of Williams & Lusseau‟s (2006) analysis indicated that while 

removal of random individuals did not fracture the social network, targeted removal of 

individuals (as would be expected in a live-capture scenario) caused the network to 

splinter into smaller groups.  Short-finned pilot whales in Hawaiian waters are not at risk 
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of live capture; however, this analysis does suggest that, as a strongly matrifocal species 

similar to killer whales, loss of key individuals within the social unit (e.g., as a result of 

fishery interactions) could weaken unit stability.  As a small resident population 

demonstrating strong group cohesiveness, short-finned pilot whales off the island of 

Hawai„i many warrant special management considerations.    
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Appendix A: Group size 

When comparing group size estimates among studies of long-finned pilot whales, 

group sizes were not appreciably different for encounters delineated using the 200m 

boundary and ≤5 inter-individual distance, with a mean=20, SD±17, range= 2-135 for 

Ottensmeyer & Whitehead (2003), and a mean=14, SD±18, range= 2-150 for de 

Stephanis et al. (2008b).  However, the 1,000m chain rule used by the Cañadas & 

Sagarminaga (2000) study reported a larger average group size (mean=41.1, SD±58.4) 

and membership range (1-350).  A logarithmic transformation of the data in the Cañadas 

& Sagarminaga (2000) study reduced the average group size to 20.9 individuals, although 

they reported that 10.1% of the sightings contained ≥100 individuals, suggesting that 

larger group sizes might be more strongly associated with sparsely distributed groups.  

The average group size for the current study (mean=20.7) is therefore in line with the 

other studies presented here; however, the average group size range (1-53) is noticeably 

smaller despite having a more relaxed definition of encounter than all but one of the 

studies.  The smaller group size range documented off the island of Hawai„i could 

indicate a difference between the two pilot whale species (all comparisons were with 

studies of long-finned pilot whales), a difference in local ecology, or a difference in 

social structure.  Additional field effort off the island of Hawai„i from 2008 has since 

documented two encounters with maximum group size estimates of 230 and 240 

individuals, indicating that while it may be uncommon, larger aggregations do exist.  As 

Ottensmeyer (2001) noted, the modifications Heimlich-Boran (1993) made to the original 

sighting data prevented any comparison of group-size estimations. 
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Over half of the 86 photographed encounters for which coverage estimates were 

available reported <50% coverage; while not representative of the entire data set (61% of 

all directed research encounters), this value does suggest that in the majority of 

encounters a portion of individuals who were present were likely not documented.  

However, use of a coverage index in lieu of % coverage provided a consistent metric for 

coding encounters from different sources and allowed results to be more directly 

compared with other studies; therefore, rather than restricting encounters used in the 

study based on multiple metrics, some of which were only applicable to a portion of the 

data set, a single measure was used.  
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Appendix B: Evolving fingerprints: working with natural markings 

By nature, the markings that form the foundation of photo-identification studies 

are not fixed elements of an individual‟s appearance, but dynamic characteristics that 

often reflect events in an individual‟s life history.  The potential for a constellation of 

markings on the dorsal fin to change, either with the addition of new markings, the loss of 

markings through the addition of a more dramatic mark-change event, or the alteration of 

an existing mark shape are real concerns that affect the accuracy of photo-identification 

results in describing populations.  In a photo-identification study of melon-headed whales 

around the main Hawaiian Islands between 2002 and 2009, Aschettino et al. (2011) 

found mark changes to 36 distinctive, well-photographed individuals (10.9%), four of 

which underwent several independent mark-change events over the course of the study; 

mark changes were estimated to occur at a rate of once per 9.2-13.8 years (6.7-10.3 years 

for the Hawai„i resident population and 15.2-21.0 years for the main Hawaiian Islands 

population).  A missed-match rate of 5% of  distinctive individuals was found in the 

melon-headed whale study (Aschettino et al. 2011); missed matches included situations 

in which a single individual was assigned to two separate catalog IDs, and in which right 

side and left side photos assigned to the same ID were, in fact, different individuals.  

Mark changes were documented on over half (55%) of the pygmy killer whales re-

sighted off the island of Hawai„i, resulting in a total of 71 modifications to the dorsal fin 

(including five occasions in which the total number of notches decreased due to the 

merging of notches); mark-change events were estimated to occur at rate of once every 

3.9-6.1 years (McSweeney et al. 2009).  Mark changes were also documented in 17 
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(24.3%) of rough-toothed dolphins re-sighted around the main Hawaiian Islands 

(estimated rate of mark change once every 2.42 years), and in 26 (32.5%) of the re-

sighted false killer whales, with an estimated rate of mark change of once every 6.9-8.8 

years (Baird et al. 2008a, b).  Ottensmeyer (2001) reported mark changes resulting in 

additional nicks or notches to three individuals over the two-year study period; no loss of 

marks were observed and only minor changes to the dorsal fin were implied.   

Damage to the leading and the trailing edge of the dorsal fin can result in a 

diversity of mark shapes and sizes, creating much speculation over the origin of these 

markings.  Heimlich-Boran (1993) described 24 categories of dorsal fin disfigurements 

found in all age and sex classes within the population of short-finned pilot whales, and 

speculated that nicks and scratches could be caused by predators or objects such as boat 

propellers, but were most likely caused by conspecifics; whether these interactions were 

aggressive in nature is unknown.  Ottensmeyer (2001) suggested that the origin of the 

markings could bias the study if aggressive or social individuals were more likely to 

acquire notches than other members of the population, or if certain age and/or sex classes 

had a higher probability of being marked (such as adult males).  Heimlich-Boran (1993) 

found that adult males were significantly more recognizable than immature short-finned 

pilot whales. 
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Appendix C: Distinctiveness of the study population and the influence of photo-

identification on fine-scale and population-wide analysis 

Techniques such as those used to study social structure that rely on characteristics 

of individuals to make wider assumptions about the study population require that 

individuals be consistently and reliably identifiable through time; therefore, only 

distinctive individuals with good-quality photos are typically used in analyses.  Würsig & 

Jefferson (1990) acknowledged misidentifying poorly-marked individuals and realizing 

the error only after higher quality photos were obtained.  However, by definition, 

analyses restricted to only distinctive individuals are not truly representative of the entire 

study population (though studies may necessarily make this assumption), and potential 

biases associated with these results need to be addressed.  As individuals acquire 

markings throughout their lives, distinctiveness is generally acknowledged to increase 

with age (Ottensmeyer & Whitehead 2003) and individuals included in the current study 

are largely considered to be adults or sub-adults.  Given that distinctiveness is loosely 

correlated with age, restricting slightly and non-distinctive individuals from analyses may 

result in the complete or partial exclusion of one or more entire age classes.  The 

exclusion of any portion of the population from analysis is less than ideal, and while 

conclusions drawn from these results will only be truly representative of distinctive 

members of the population, effort should be made to include anecdotal information on 

individuals not included in all analyses to provide a more complete depiction of the study 

population.  
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Estimating the proportion of the study population considered distinctive is 

important in determining how representative results are of the entire population, and for 

allowing results to be scaled accordingly to eliminate conservative bias.  Accuracy of the 

population distinctiveness estimate is dependent on the quality of photos taken in the 

field, the scales used to assign distinctiveness and photo quality ratings and the skill-level 

of the photo-identification technician.  Until the advent of digital photography, photo-

identification studies relied heavily on the development of negatives or slides that would 

typically be examined using a light board and optical loupe, or alternatively would be 

projected onto a smooth surface and traced to provide a hard copy of the dorsal fin image 

(Würsig & Jefferson 1990).  Of the five primary pilot whale photo-identification studies 

reviewed for the current study (see Table A.1), four exclusively employed non-digital 

cameras, and one (de Stephanis et al. 2008b) used slides for the first portion of the study 

(examined using a light table and loupe and later scanned into a computer) and digital 

photographs analyzed on a computer screen for the latter portion.  Pilot whale studies 

employing slides and negatives were analyzed using a variety of methods.  Both Shane & 

McSweeney (1990) and Miyashita et al. (1990) initially examined slides and negatives 

using a magnifying loupe before sketching outlines of individual dorsal fins for catalog 

analysis.  Heimlich-Boran (1993) used a video processor to magnify images and identify 

quality photos that were then printed out for analysis, and Ottensmeyer & Whitehead 

(2003) scanned selected negatives to be used with the computer-based matching program 

Finscan.  With the exception of Ottensmeyer & Whitehead (2003) none of the pilot whale 
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studies used computer-assisted matching programs, and the majority used physical rather 

than digital images.   

Table A.1 Photo-identification studies of pilot whales 

Study 

de 

Stephanis 

et al. 

(2008b) 

Ottensmeyer & 

Whitehead 

(2003) 

Heimlich-

Boran (1993) 

Shane & 

McSweeney 

(1990) 

Miyashita & 

Kasuya (1990) 

Species G. melas G. melas 
G. 

macrorhynchus 

G. 

macrorhynchus 

G. 

macrorhynchus 

Location 
Strait of 

Gibraltar 

St. Lawrence 

Bay, Nova 

Scotia 

Tenerife, 

Canary Islands 

Hawai„i and 

Catalina 
Japan 

Duration ~7 years 26 months 22 months 

4 winters- 

Catalina 

5 days over 2 

years- Hawai„i 

14 sightings 

from 5 cruises 

Association 

index 
HWI HWI and SR? 

SR (Ratio 

Index) 
NA NA 

Mean 

group size  
14, SD±18 20, SD±17 NA* Not reported Not reported 

Distinctive-

ness of 

population  

Correction 

Factor: 

1.42 (95% 

CI=1.32-

1.52)*** 

Overall:  

33.6%, 

SE=4.1% 

By encounter: 

35.2%, 

SE=3.6% 

~85%** 

33.5% ±4.43%- 

Catalina 

45.3%±2.89%- 

Hawai„i 

 (error type not 

reported) 

Not reported 

*Field estimates of group size not reported 

**Not reported, based on estimate of non-distinctive individuals 

***“Inverse of the proportion of identifiable individuals” (de Stephanis et al. 2008b) 

The current study used only digital photographs visually displayed full-screen on 

19 inch computer monitors and processed without the aid of photo-identification 

software.  The variety of media and matching techniques utilized by the pilot whale 

studies mentioned above make robust comparisons among studies difficult.  

Technological advances in digital cameras and computer-based image visualization 

software allow individuals to be captured at greater resolution than previously available, 

and for images to be digitally manipulated in ways not available to physical print photos 
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or slides and negatives.  The ability to digitally enlarge photos and enhance contrast, 

brightness and color balance allow the identification of fine-scale markings in the dorsal 

fin and scarring patterns on the dorsal fin and body to be seen that would otherwise be 

lost to low-contrast photos.  While the advantages of digital manipulation increase the 

rate of successful matches that might otherwise be considered “close” and thus provide a 

more accurate view of the study populations, digital manipulation also creates a 

discrepancy between results obtained through pre-digital methods.  Estimations of the 

proportion of the population considered distinctive are dependent on the definition of 

distinctiveness, which may vary depending on the detail visible in the photo; although 

distinctiveness ratings ideally would remain independent of photo quality, an increase in 

overall photo quality from higher resolution digital photos could influence distinctiveness 

ratings.  Indeed, the use of digital photo-manipulation techniques in the current study has 

allowed individuals with virtually no markings on the dorsal fin or body to be identified 

between years.  Verborgh et al. (2009) reported that an increase in photo quality over a 

long-term photo-identification study of long-finned pilot whales allowed previously 

unidentified individuals to be entered into the catalog and slightly-distinctive individuals 

to be re-sighted. 

Unfortunately, no standardized method was used to estimate the distinctiveness of 

the different pilot whale populations reviewed here, making comparisons difficult.  

Assuming equal photographic coverage of all individuals, Ottensmeyer & Whitehead 

(2003) calculated the ratio of the number of good-quality photos of distinctive individuals 

to the number of good-quality photos of all individuals, regardless of distinctiveness, 
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while de Stephanis et al. (2008a) calculated the inverse of this ratio and added a 

correction factor.  Ottensmeyer & Whitehead (2003) reported a population distinctiveness 

estimate of 33.4% (SE=3.6%), while de Stephanis et al. (2008a) did not provide a percent 

estimate of distinctive individuals but listed a correction factor of 1.42 (95% CI=1.32-

1.52) for the entire data set, assumed here to equal 70.0% (95% CI=65.8-75.8).  Verborgh 

et al. (2009) annually estimated the percent of well-marked long-finned pilot whales in 

the Strait of Gibraltar between 1999-2005, ranging from 33.1% (95% CI=30.8-35.7) in 

2004 to 40.2% (95% CI=34.0-49.1) in 1999, after a correction factor using 1,000 

bootstrap replications was applied.  While distinctiveness estimates between the 

Verborgh et al. (2009) study and Ottensmeyer & Whitehead (2003) study are similar, the 

distinctiveness estimate from the de Stephanis et al. (2008a) study is substantially higher.  

Heimlich-Boran (1993) did not provide an estimate of the proportion of the population of 

short-finned pilot whales off Tenerife considered distinctive; however, he estimated that, 

on average, 15% (14.8, SE±0.7) of the study population was unrecognizable using either 

dorsal fin markings or scarring patterns (calculated by taking the difference between the 

group size estimate and number of identifiable individuals (range 0-34%, n=35).  Shane 

& McSweeney (1990) calculated a distinctiveness estimate of 45.3% (±2.89) for the 

island of Hawai„i on three days based on the ratio of identifiable individuals to the total 

number of good-quality photographs regardless of distinctiveness (type of error factor not 

reported).  Although Shane & McSweeney (1990) did not provide details of the methods 

used to calculate the Santa Catalina Island population distinctiveness estimate, estimates 

of 33.5% (±4.43) to 35.0% (±3.27) were lower than those from Hawai„i, and differing 
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photo qualities were cited as a possible explanation for this discrepancy (type of error 

factor not reported).   

The method used to estimate population distinctiveness in the current study, by 

calculating the ratio of distinctive individuals with good-quality photographs to all 

individuals with good-quality photographs, is different from those of the other pilot 

whale studies referenced here, and follows previous studies of several cetacean species 

off Hawai„i (see Baird et al. 2008a, b, McSweeney et al. 2009, Aschettino et al. 2011).  

Encounters were processed such that all possible photos were allocated to an individual 

regardless of photo quality, and only the best photo was given a photo quality rating for 

use in subsequent analysis; thus, poor-quality photos were not separated from those of 

higher quality within an individual‟s sighting record, and individual photos were not 

scored due to the volume of photos present.  However, such thorough sorting provided a 

nearly-complete record of individuals present within an encounter, allowing individuals 

to be accounted for regardless of distinctiveness.  Through the aid of digital photo-

manipulation techniques, encounters were sorted completely; all individuals, regardless 

of distinctiveness (including calves), were assigned catalog IDs, provided photo quality 

was deemed sufficient to be able to re-sight that individual.  It is reasonable to assume 

that, were each of the studies reviewed here able to be repeated with higher resolution 

photographs and digital processing, both the re-sighting rate and distinctiveness estimates 

would increase slightly, as evidenced by comparing results here to the Shane & 

McSweeney (1990) study.   
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Although higher than the other pilot whale studies reviewed here, the proportion 

of the study population estimated to be distinctive is likely conservative, as slightly 

distinctive individuals have been repeatedly (and in some cases consistently) re-sighted 

among years using good and excellent-quality photos, as have individuals with clean fins. 

In some cases, match confirmation required additional markings beyond the leading or 

trailing edge of the dorsal fin, such as saddle pigmentation patterns or persistent scars; 

however, scarring was only used to aid in confirmation of a match, and never to deny a 

match, since it was not known which scars were ephemeral.  Auger-Méthé & Whitehead 

(2007) noted in a study of natural markings among long-finned pilot whales in Nova 

Scotia that all pilot whales sampled had at least one mark present and averaged 19 

markings representing five different types (though few were permanent), supporting 

observations from the current study that with frequent re-sighting rates ephemeral scars 

can be used to aid in match confirmation.  

 


