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This document provides details on data processing methods common among all Hawaiʻi BIAs, 

particularly those that incorporated satellite tag data (general methods summarized in Kratofil et 

al., this issue). BIA-specific methods (e.g., residence time/occupancy pattern for MHI humpback 

whales) are described in the respective BIA’s full description in Supplementary File A.  

 

Satellite tag data: Pre-processing 

Cascadia Research Collective, Pacific Islands Fisheries Science Center, and Naval Information 

Warfare Center Pacific data: 

Argos location data were first processed through the Distance-Angle-Rate filter of the Douglas-

Argos Filter (DAF, Douglas et al. 2012) accessed through Movebank (Kranstauber et al., 2011) 

to remove erroneous locations based on unrealistic traveling speeds and turning angles. User-

defined settings for each species are detailed in Table S1 below. For Fastloc-GPS tags, GPS 

locations were restricted to those with a residual error less than 35 (Dujon et al., 2014) and/or 

time error less than 10 seconds long. Restricted GPS locations were additionally filtered through 

a general-purpose speed filter on Movebank (Kranstauber et al., 2011) with user-defined error set 

to 1,000 m and speed corresponding to the same rate as used in the DAF. GPS locations derived 

from messages from only 4 satellites often have poorer location accuracy than those calculated 

by at least 5 satellites, and thus, some studies have restricted GPS locations to those with at least 

5 or 6 satellite acquisitions for analyses (Lowether et al., 2015; Witt et al., 2010). However, this 
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additional quality control criterion excludes a substantial proportion of the GPS locations in 

these datasets. Therefore, we retained GPS locations calculated with 4 satellites (and after 

filtering as detailed above) and account for their greater location uncertainty further in the 

analyses. Douglas-filtered Argos locations and restricted Fastloc GPS locations were merged (for 

applicable tags) for subsequently analyses.  

 

Oregon State University data: 

Humpback whale telemetry data from Oregon State University were pre-processed following 

their custom track editing protocol (see Palacios et al., 2019, 2020).  First, locations on land and 

Argos locations with a location quality class (LC) of Z (poorest) were removed. The remaining 

locations were filtered as follows: lower-quality LCs (0, A, or B) were excluded if they were 

received within 20 minutes of higher-quality locations (1, 2, or 3). Travel speeds between the 

remaining locations were calculated, and where the speed between two locations exceeded 14 

kilometers per hour, the location resulting in the shortest track was retained and the other 

discarded.  

 

Satellite tag data: Movement modeling 

After pre-processing, resultant locations were fit to a continuous-time correlated random walk 

model via crawl v2.2.3 (Johnson et al., 2008; Johnson and London, 2018) in the R environment 

for statistical computing (R Core Team, 2021). This movement modeling approach allowed us to 

estimate locations at regular intervals (from irregular Argos/GPS data) while also accounting for 

positional uncertainty that typifies Argos data. To formulate the error component of the crawl 

model, Argos error ellipse measures were used if tracks were derived from deployments after 

2007 (i.e., data were Kalman-processed, Collecte Localisation Satellites, 2015), and estimated 

accuracies for Argos location classes (LC3-1 as 250m, 500m, and 1500m, respectively, and LC0-

B unbounded) were used for tags deployed 2007 and earlier when the Kalman processing 

algorithm was not available. GPS locations (deployment locations and/or from Fastloc GPS tags) 

do not include LC classes nor error ellipse measures. Therefore, where applicable, GPS locations 

were assigned an error radius of 50 meters if they were deployment locations or derived from at 

least 5 satellites and 1,000 meters if they were derived from 4 satellites (Bryant 2007; Dujon et 

al., 2014; Hazel, 2009). Fitted crawl models were used to predict locations at a time step either 

(1) appropriate for the data considering the median time between filtered locations (e.g., 1 hour) 

or (2) appropriate for subsequent analyses (e.g., residence time calculations, kernel density 

analyses). Details on specific crawl time-steps used for each species/BIA are provided in Table 

S1.  

 

Satellite tag data: Re-routing around land  

Crawl locations were re-routed around land as needed using the pathroutr package (London, 

2021), either using a polygon representing the island with an added distance band (for nearshore 

dwelling species) or a polygon representing an isobath, to ensure re-routed locations were within 

reasonable proximity to shore or depths for the species. For all cases, the polygon serving as the 

basis of the BIA had an inner boundary defined as the barrier polygon used in this re-routing 

step. Crawl positions during periods of large transmission gaps (with a 1-day gap threshold) 

were removed from each individual’s track (where applicable) to limit locations characterized by 

large positional uncertainty resulting from interpolation over long periods without any original 

Argos data.   



 

Satellite tag data: Kernel density methods 

Some BIAs involved kernel density estimation (KDE) of satellite tag data to generate a utility 

distribution (UD) of the sample population (Worton, 1989) from which an isopleth of the UD 

was drawn to serve as the basis for the BIA (e.g., 50% for core areas). The general KDE process 

follows: to mitigate spatial autocorrelation, a coarse timestep of crawl locations was used (e.g., 

4-hour); and one of each pair of tagged individuals moving in concert was removed (to reduce 

pseudoreplication). Following above, crawl positions during periods of large transmission gaps 

(with a 1-day gap threshold) were removed from each individual’s track (where applicable) to 

avoid generation of artificially “dense” areas resulting from interpolation over long periods 

without any underlying Argos/GPS data. All tag locations were pooled together, and the 

contribution of each tag’s location was weighted to the overall kernel density based on 

deployment length, and the KDE was re-scaled so it integrated to 1 (Hauser et al. 2014; Hill et al. 

2019), such that locations from shorter deployments would have less weight than those with 

longer deployments. This weighting method also mediates bias associated with tag deployment 

location, as animals with longer transmission durations will have had a greater opportunity to 

move outside of the deployment area. Kernel densities were estimated using the bivariate plug-in 

bandwidth (or smoothing parameter) matrix (Duong & Hazelton, 2003, 2005; Duong, 2007) 

accessed through the ks package for R (Duong, 2021). The location weighting was completed 

using the weights argument within the ks package (Duong, 2021). 

 
Table S1. Information on satellite tag data processing methods by each species/population 

with a BIA. 

BIA-Species DAF^: minrate* 

(km/hr) 

Parent BIA 

crawl 

timestep 

(hr) 

Child BIA 

crawl timestep 

(hr) 

Pathroutr: 

barrier polygon 

MHI Short-finned 

pilot whale 

15 4 4 300-m isobath 

MHI Insular False 

killer whale 

20 4 4 Land + 50-m 

distance band 

NWHI False killer 

whale 

20 4 NA Land + 50-m 

distance band 

KNO Rough-

toothed dolphin 

20 1 4 200-m isobath 

MNHI Rough-

toothed dolphin 

20 1 NA 300-m isobath 

Kohala Melon-

headed whale 

15 1 NA 200-m isobath 

KNOMN 

Bottlenose dolphin 

20 1 1 Land + 50-m 

distance band 

HI Bottlenose 

dolphin 

20 1 NA Land + 50-m 

distance band 



OMNHI 

Pantropical spotted 

dolphin 

20 1 1 Land + 50-m 

distance band 

OMNHI 

Blainville’s beaked 

whale 

10 4 4 300-m isobath 

HI Cuvier’s beaked 

whale 

10 4 4 800-m isobath 

HI Pygmy killer 

whale  

15 1 NA 100-m isobath 

OMN Pygmy killer 

whale  

15 1 NA 400-m isobath 

MHI Humpback 

whale 

15 10 min+ 10 min+ Land + 50-m 

distance band 

*minrate = maximum realistic sustainable rate of movement (based on field observations) 
^Douglas-Argos Filter 
+Humpback whale telemetry data transmitted at a much coarser frequency than this time-step; a 

fine time-step of 10 minutes was used for this R-BIA for residence time and occupancy pattern 

calculations. These methods are detailed in Supplementary File B (full MHI humpback whale R-

BIA description).  

 

Other DAF user-defined settings common across all species/populations: 

KEEP_LC = 2  

Argos location class level to be exempt from removal by the filter. 

 

Maxredun = 3km 

Radius in kilometers within which two points are self-confirming (location redundancy).  

 

Ratecoef = 25 degrees 

Angle created by three consecutive points to identify acute angles characteristic of typical Argos 

location error.  

 

Sightings data 

As noted in Kratofil et al. (this issue), sighting and effort data used in BIA boundary 

determinations primarily came from Cascadia Research Collective small boat surveys and 

National Marine Fisheries Service large-vessel ship-based line-transect surveys around the main 

Hawaiian Islands (the latter source also included the Northwestern Hawaiian Islands). Cetacean 

research has been ongoing almost continuously in Hawaiian waters since the late 1960s (e.g., 

Norris and Dohl, 1980), and dozens of graduate degrees have been focused on Hawaiian 

cetaceans, primarily spinner dolphins or humpback whales. While these efforts have contributed 

substantially to understanding stock structure (e.g., Andrews et al., 2010 for spinner dolphins) as 

well as importance and spatiotemporal variability, they have primarily been undertaken in 

shallow, near-shore areas, and have typically been focused on a single species (mostly spinner 

dolphins and humpback whales). Attempting to compile and analyze these sources of effort and 

sighting data would be prohibitively time-consuming with limited benefit to boundary 

determinations. While data from aerial surveys for humpback whales have been used to inform 



stock boundaries, aerial survey data for other species were not included in analyses given the 

survey mode (i.e., passing mode for most odontocetes) and higher altitude used for humpback 

surveys, potentially leading to higher species misidentification for smaller odontocetes.  

 

BIA boundary creation 

For BIA boundaries based off of minimum convex polygons (MCPs) around sighting and/or 

crawl locations, MCPs were generated using the sf package in R (Pebesma, 2018). For many 

BIA boundaries based off MCPs, a “band” was added to the MCP to account for positional 

uncertainty estimated by crawl. The crawl model provides estimates of standard error for 

predicted positions in the x and y planes (i.e., latitude and longitude); these estimates are 

informed by the movement model and the error component of the model (i.e., Argos error ellipse 

metrics or LC class; Johnson et al., 2008). Although statistical summaries of crawl-estimated 

standard errors varied across species and individual tagged whales, mean standard errors (in x 

and y) were generally between 2 and 3 km. Therefore, we applied a 3-km distance band to all 

MCPs across all applicable BIAs.  

 

The area of each BIA was calculated using the st_area function within the sf package in R 

(Pebesma, 2018). This function calculates the geodetic area of an sf spatial polygon in the units 

of the coordinate reference system (CRS) specified for the spatial polygon. For all Hawaiʻi BIAs, 

the Hawaiʻi Albers Equal Area CRS (ESRI:102007) was specified for the polygons; the 

measurement units for this CRS are in meters. The calculated area of the BIA polygons (in 

meters) were converted to kilometers for reporting purposes. For BIAs that had more than one 

spatial polygon, the total area of the BIA was represented as the sum of the areas of all spatial 

polygons comprising the BIA.  
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