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Abstract. Assessing the patterns of wildlife attendance to specific areas is relevant across
many fundamental and applied ecological studies, particularly when animals are at risk of
being exposed to stressors within or outside the boundaries of those areas. Marine mammals
are increasingly being exposed to human activities that may cause behavioral and physiological
changes, including military exercises using active sonars. Assessment of the population-level
consequences of anthropogenic disturbance requires robust and efficient tools to quantify the
levels of aggregate exposure for individuals in a population over biologically relevant time
frames. We propose a discrete-space, continuous-time approach to estimate individual transi-
tion rates across the boundaries of an area of interest, informed by telemetry data collected
with uncertainty. The approach allows inferring the effect of stressors on transition rates, the
progressive return to baseline movement patterns, and any difference among individuals. We
apply the modeling framework to telemetry data from Blainville’s beaked whale (Mesoplodon
densirostris) tagged in the Bahamas at the Atlantic Undersea Test and Evaluation Center
(AUTEC), an area used by the U.S. Navy for fleet readiness training. We show that transition
rates changed as a result of exposure to sonar exercises in the area, reflecting an avoidance
response. Our approach supports the assessment of the aggregate exposure of individuals to
sonar and the resulting population-level consequences. The approach has potential applica-
tions across many applied and fundamental problems where telemetry data are used to charac-
terize animal occurrence within specific areas.

Key words: aggregate exposure; area attendance; beaked whales; individual-level random effects; sonar
disturbance; Template Model Builder; transition probability.

INTRODUCTION

As a result of the expansion of human activities, indi-
viduals from wildlife populations are increasingly being
exposed to a variety of anthropogenic stimuli (Sanderson
et al. 2002, Halpern et al. 2008, Dı́az et al. 2019). Some
human activities can have nonlethal effects on exposed
individuals, causing deviations in their natural patterns
of behavior and physiology (Pirotta et al. 2018a, Frid

and Dill 2002). Current European Union (European
Habitats Directive 92/43/EEC) and United States
(Endangered Species Act, 16 U.S.C. §§ 1531 et seq.;
Marine Mammal Protection Act, 16 U.S.C. §§ 1361
et seq.) legislation provides the basis for an assessment
of the population-level consequences of these behavioral
and physiological changes. Understanding where, when,
and how often animals come into contact with human
activities is the first step toward this assessment. In par-
ticular, quantifying population consequences requires an
evaluation of (1) the proportion of the population that is
exposed and (2) the aggregate exposure of each individ-
ual (i.e., the total duration and intensity of exposure to
the stressor of interest during a biologically meaningful
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period [Pirotta et al. 2018a]). Various factors influence
the patterns of exposure of individuals in space and time.
For example, a population’s movement patterns (Jones
et al. 2017, Pirotta et al. 2018b), the size of individual
home ranges and the motivation underlying the use of
the area of interest (e.g., whether the area contains for-
aging patches or is used solely for transit; Hückstädt
et al. 2020) will all contribute to determine if each indi-
vidual in a population is exposed at all and, if so, its
aggregate exposure.
Many marine organisms rely on the use of sound for

important life-history functions (e.g., communication
and prey finding; Montgomery and Radford 2017). In
recent decades, extensive work on the population conse-
quences of disturbance has thus been motivated by
growing concerns on the effects of increasing anthropo-
genic noise pollution in the ocean (Popper and Hawkins
2016), particularly on marine mammals (National
Research Council 2005, Nowacek et al. 2007). Among
the various sources of noise, cetacean populations may
be affected by military operations using active sonar
(Southall et al. 2016). Dedicated experiments and
opportunistic exposure studies have shown that animals
can respond to active sonars by changing their horizon-
tal movement and diving behavior, leading to interrup-
tion of foraging activity, habitat displacement, and,
potentially, changes in their physiology (Tyack et al.
2011, Southall et al. 2016, De-Ruiter et al. 2017, Falcone
et al. 2017, Harris et al. 2018, Joyce et al. 2020). As
such, current environmental impact statements con-
ducted in the areas used for naval training activities
(hereafter “ranges”) require an assessment of the number
of individuals that respond to sonar exercises; this num-
ber can be estimated from the probability of an individ-
ual getting exposed to the noise source, and the
probability of responding when exposed to a certain
noise level (Harris et al. 2018).
A suite of individual-based animal movement models

has been developed to estimate the number of individ-
uals that are exposed and respond over the duration of a
single Navy exercise (Frankel et al. 2002, Houser 2006,
Donovan et al. 2017, U.S. Department of the Navy
2018). However, these models are not suitable for the
estimation of individuals’ exposure to sonar over time
and across multiple exercises, because their predictions
become increasingly unrealistic when simulating move-
ments for more than a few days, with individuals tending
to diffuse away from the range area (Donovan et al.
2017). Moreover, simulating fine-scale animal move-
ments over a long time period is computationally inten-
sive, and unnecessary when the animals are outside the
area of interest. To overcome these difficulties, most
existing models treat each day independently and do not
tally the number of times individuals are exposed over
longer periods, even though predictions of population-
level effects may change drastically depending on the
level of aggregate exposure (Donovan et al. 2017, Pirotta
et al. 2018a). An alternative method is required to

characterize the long-term patterns of individual occur-
rence in the target area and the effect of exposure and
response to disturbance on these patterns. Such a
method would then form the basis for a detailed quanti-
fication of the number of times each individual is
exposed when inside the area and thus susceptible to
respond to disturbance. In order to capture the various
aspects of the ecology of a population that could influ-
ence usage of the area, the method should be informed
using empirical movement data collected from individ-
uals in the population over a comparable time scale.
Modern satellite telemetry technologies allow us to track
marine mammal movements for long periods, and could
therefore be used to characterize the attendance to spe-
cific areas of interest. However, they are often associated
with substantial spatial error in animal relocations
(Costa et al. 2010).
In this study, we develop a discrete-space, continuous-

time analytical approach to monitor the occurrence of
animals in an area of interest and their transition rates
across the boundaries of that area, informed by teleme-
try data collected with uncertainty. Our goal is to be able
to estimate the aggregate exposure and response to sonar
of individuals in a population over biologically relevant
time periods. The approach allows for differences in
movement patterns among individuals. Importantly, the
potential repulsive effect that the activity under analysis
has on the animals and the progressive decay of such
effect over time can also be quantified (Tyack et al.
2011, Moretti et al. 2014). While the approach is moti-
vated by and applied to case studies involving the expo-
sure of cetaceans to disturbance from active sonar
operations on U.S. Navy ranges, it is widely applicable
to other contexts and types of stressors. The method
would also be useful in situations where the estimation
of the movements in and out of an area is of interest,
irrespective of the presence of anthropogenic stressors
(e.g., to monitor the attendance of individuals to a pro-
tected area).

MATERIALS AND METHODS

Telemetry data and exposure information

We use satellite telemetry data from seven Blainville’s
beaked whales (Mesoplodon densirostris) tagged between
2009 and 2015 within or near the Atlantic Undersea Test
and Evaluation Center (AUTEC), in the Bahamas
(Fig. 1). This region is regularly used by the U.S. Navy
to carry out military exercises with active sonar. Tagging
was carried out in advance of large-scale exercises (Sub-
marine Command Courses) to monitor resulting
changes in the animals’ movement behavior.
Data collection techniques are described in detail in

Joyce et al. (2020). Animals were fitted with Wildlife
Computers SPLASH transmitters (n = 2, Mk-10; Wild-
life Computers, Redmond, Washington, USA) and
SPOT model tags (n = 5, AM-S240A-C; Wildlife
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Computers) in the Low Impact Minimally Percutaneous
External-electronics Transmitter (LIMPET) configura-
tion; see Appendix S1: Table S1. Tags were attached on
or near the dorsal fin from distances of 5–25 m using a
crossbow or black powder gun (Tyack et al. 2011, Joyce
et al. 2020). Location estimates of tagged whales were
provided by the Argos system based on the Kalman fil-
tering method (Lopez et al. 2013). Tags were scheduled

to transmit up to 700 times during 12–18 h of each day,
timed to coincide with passes of satellites from the Argos
satellite system.
Information on the use of mid-frequency active sonars

(MFAS) at AUTEC was available from records in the
U.S. Navy’s internal Sonar Positional Reporting System
(SPORTS) database (including, but not limited to, the
Submarine Command Courses analyzed in Joyce et al.
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FIG. 1. Estimated tracks of the seven Blainville’s beaked whales (Mesoplodon densirostris), at the AUTEC range (shown by the
light gray polygon), Bahamas. The bottom right plot shows the plotted region, for each individual, in relation to Florida, USA; the
calculated raw transition probability matrix for sequential transitions across AUTEC range boundaries, averaged across individuals,
is shown as an inset table. The raw ARGOS data can be seen in Appendix S1: Fig. S1.
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[2020]). While SPORTS data are known to suffer from
transcription errors and incomplete records, they offered
the best available source of sonar information. Specifi-
cally, we extracted bouts of high-power (hull-mounted,
surface-ship) and mid-power (helicopter-deployed)
MFAS use (sensu Falcone et al. [2017]) during tag
deployment periods, and calculated the number of days
since exposure to a sonar event for each individual relo-
cation. The outline of the hydrophone array at AUTEC
was used as the range boundary, and, for simplicity, ani-
mals were considered exposed when occurring within
this area during sonar activity.
In addition to tracks of M. densirostris from AUTEC,

we applied our modeling approach to four other ceta-
cean species with varying movement behavior and ecol-
ogy, occurring over two different U.S. Navy ranges, the
Hawaiʻi Range Complex (HRC) and the Southern Cali-
fornia Range Complex (SOCAL). Details of these addi-
tional case studies and the challenges they present for
estimating the effects of sonar exposure are described in
Appendix S2.

Overview of modeling approach

We model movement probability into and out of a
region encompassing a Navy range where sonar exercises
take place, and how this probability is influenced by the
use of sonar on the range. The models presented below
are implemented in the mmre R package; see the package
(available online) and Appendix S3 for further details
and examples.11

Our modeling approach consisted of three intercon-
nected steps. First, raw tracking data were filtered for
obvious mistakes in animal relocation, identified by
unrealistic horizontal displacement. While subsequent
models can accommodate uncertainty in satellite-
derived locations of the animals, aberrant observations
can negatively affect model performance (Patterson
et al. 2010). We therefore filtered recorded Argos loca-
tions using the R package argosfilter (Freitas 2012),
so that highly unlikely observations (i.e., those implying
a horizontal displacement >15 m/s) were removed. Sec-
ond, filtered tracks were adjusted for Argos location
uncertainty using a continuous-time correlated random
walk state-space model, which returned estimated tracks
based on the underlying movement model (Continuous-
time correlated random walk). Finally, estimated tracks
were analyzed using a discrete-space continuous-time
Markov model that quantified the transition rates across
range boundaries and the effect of exposure to sonar dis-
turbance on animal movement patterns (Discrete-space
continuous-time Markov model).
Our approach is conceptually comparable to the

continuous-time Markov chain model proposed by
Hanks et al. (2015). The authors discretize space into a
grid, and use tracking data to model residence time in

each occupied cell and transitions to neighboring cells in
a Generalized Linear Modeling framework. Recently, a
discrete-space continuous-time model has been devel-
oped to analyze whale diving behavior from time series
of binned depth observations (Hewitt et al. 2021). Here,
we reduce gridded space to two larger areas: on and off
a Navy range. Occurrence within each area is used to
determine the known states of an individual at the obser-
vation times, which are then analyzed in a multi-state
modeling framework in continuous time to infer instan-
taneous transition rates (Jackson 2011). Our aim is to
assess the patterns of attendance to an area of interest
(as a function of exposure to a stressor), as opposed to
the role of environmental variables on individuals’
movement decisions. Similarly to Hooten et al. (2016)
and Buderman et al. (2018), we extend the model to
include individual random effects on the transition rates,
thus making the model hierarchical. Because individual
Argos locations are provided with error, we first impute
the tracks using a continuous-time correlated random
walk (Johnson et al. 2008, Albertsen et al. 2015), as in
Hanks et al. (2015). In line with their work, we also pro-
pose multiple imputation to fully propagate the uncer-
tainty associated with estimated tracks to the results of
the Markov model (Discrete-space continuous-time Markov
model). In contrast with the formulation of Hanks et al.
(2015) or Jackson (2011), our approach is fitted using
Template Model Builder (TMB; Kristensen et al.
2016), which implements automatic differentiation and
applied Laplace approximation to complex random-
effect models.

Continuous-time correlated random walk

Due to the uncertainty associated with Argos locations,
individual tracks were estimated using the continuous-
time correlated random walk model (CTCRW) described
in Johnson et al. (2008) and Albertsen et al. (2015) using
the R package argosTrack (Albertsen 2017).
In brief, the CTCRW model is a state-space model

(SSM) with measurement equation given by yct ¼ μct þ εct
where yct is the cth coordinate (c ¼ 1 [longitude], 2
[latitude]) of the observed location of an animal at time t
(t ¼ 1, 2, :::, n) with measurement error term εct. As in
Albertsen et al. (2015) the joint distribution of ε1t and
ε2t is a bivariate t distribution. The term μct is then the
“true” cth coordinate location of the animal at time t.
This location process, μct, is obtained by integrating over
the assumed instantaneous velocity of the animal at time t.
This velocity is assumed to follow an Orstein-Uhlenbeck
(OU) process (see Albertsen et al. [2015] for further
details).

Discrete-space continuous-time Markov model

Continuous-time Markov models describe how an
individual transitions between states in continuous time.
Given that an individual is in state S tð Þ at time t, the
transition intensity, qrs t, z tð Þð Þ, represents the immediate11https://github.com/cmjt/mmre
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hazard of moving from one state r to another state s,
and may be dependent on the time t of the process
as well as some time-varying covariate z tð Þ. These
transition intensities can be written as

qrs t, z tð Þð Þ ¼ limδt!0 S tþ δtð Þ ¼ sjS tð Þ ¼ rð Þ=δt (1)

and form a square matrix Q with elements qrs where
qrr ¼ �Σs≠rqrs (i.e., the rows of Q sum to zero) and
qrs ≥ 0 for r ≠ s.
Here, the state at observation time t is determined by

where the animal is located, i.e., μct (see Continuous-time
correlated random walk). We consider only two states
(i.e., r, s ¼ 1, 2f g) where state 1 ¼ off-range (i.e., outside
the area used by the Navy for military operations) and
state 2 ¼ on-range (i.e., inside this area, see Fig. 1).
The equation of our model is given by

log qk;rs zk tð Þð Þ� � ¼ β0;rs þ uk;rs
� �þ β1;rsexp �β2;rszk tð Þ� �
þ η

(2)

where β0;rs is the intercept term, representing baseline
transition rates (on the log-scale), and uk;rs indicates the
individual-level random effects (for individual k ¼ 1, :::, 7)
on the transition rates. Each uk ¼ uk;rs, uk;sr

� �
follows a

zero-mean bivariate Gaussian distribution (between
states r and s) with 2� 2 variance covariance matrix
diag σ2u, σ2u

� �
. The time-varying covariate is given by

zk tð Þ ¼ 0 during exposure

> 0 otherwise

�

and represents the number of days since an individual
was exposed to a sonar event. The Gaussian random
error term is represented by η.
Here, β1;rs represents the change in transition rate, on

the log scale, during exposure (i.e., zk tð Þ ¼ 0 thus
exp �β2;rszk tð Þ� � ¼ 1). We constrain β2;rs ≥ 0 for all
r ≠ s; by doing so, as the number of days since an indi-
vidual was exposed to sonar, zk tð Þ, increases, transition
rates decay exponentially toward their baseline values,
β0;rs (on the log scale). Therefore, β2;rs for r≠ s can be
thought of as the lessening effect of sonar exposure on
the transition rates after the termination of sonar. It
should be noted that, while we were limited by sample
size in our case, individual differences in the animals’
response to sonar could also be investigated, e.g., by
including a random effect on the β1;rs and β2;rs parame-
ters. Parameter estimates are obtained via minimization
of the negative log-likelihood, �log L Qð Þð Þ; see Appen-
dix S4 for details.
We use a likelihood ratio test (LRT) and Akaike

Information Criterion (AIC) to compare the full
model in Eq. 2 with two reduced versions: (a) a null
model that only includes baseline transition rates
and (b) a model with individual random effects

(but no effect of exposure). We refer to the full
model as (c). The test statistic for the LRT,
λLR ¼ �2 log L Qð Þ0

� �� logðL Qð ÞAÞ
� �

(i.e., twice the
difference between the log-likelihoods of the reduced,
subscript 0, and alternative, subscript A, models), fol-
lows a χ2 distribution with degrees of freedom equal to
the difference in the number of estimated parameters in
each model. We quantify the number of random-effect
parameters as 14þ 1 ¼ 15 (i.e., 2� 7 ¼ 14 for the
individual-level random effect means, twice the number
of individuals, and 1 for the bivariate Gaussian vari-
ances, fixed to be equal). We calculate the number of
parameters in each model as the sum of the random-
effect and the fixed-effect parameters. Using AIC for
models that include random effects depends on the
intended level of inference and should be carried out
with caution as the penalty is not obvious (Vaida and
Blanchard 2005, Bolker et al. 2009). Here, we are inter-
ested in population-level inference and therefore follow
the recommendation of Vaida and Blanchard (2005) to
use the marginal AIC for model comparison.
We used a multiple imputation procedure to show

how the uncertainty associated with the Argos tracks
could be propagated to the Markov model (Hanks et al.
2015, Scharf et al. 2016, 2017, Buderman et al. 2018).
For each of the seven individuals, a total of 100 tracks
were imputed using the estimated bivariate t distribution
of measurement error from the CTCRW model, fitted to
the Argos tracks (see Continuous-time correlated random
walk). We fitted the model given by Eq. 2 to the 100
imputed data sets (each containing one potential track
per individual), and calculated the pooled point estimate
and variance of each parameter as in McClintock
(2017).

Simulation

To assess the performance of the proposed model, we
used the estimated parameter values from the fitted
model (Eq. 2) to simulate new data sets. Specifically, we
simulated the states of individuals at each observed time
using the fitted transition probabilities. This was done
500 times for each individual. We refitted the model to
the 500 simulated data sets, and calculated root mean
squared errors for each parameter, as well as the percent-
age errors for β1;12, β1;21, β2;12, and β2;21 (that is, the
parameters relating to the sonar effect).

Goodness of fit

To assess the goodness of fit of the Markov model, we
took a similar approach to Aguirre-Hernández and
Farewell (2002). Specifically, we partitioned observa-
tions from each individual by time and covariate value
(time since exposure), and compared the observed
number of transitions, o, to the number of transitions
expected under the fitted model, e. Bins were created
by splitting the data into quantiles, [0–25%], [25–50%],
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[50–75%], and [75–100%], based on observation times
and covariate values (using estimated transition rates as
recommended by Aguirre-Hernández and Farewell
[2002]). The expected number of transitions in each time
and covariate bin were calculated as the sum of the esti-
mated probabilities classified in that category.
We carried out a Pearson-type goodness-of-fit

test similar to that proposed by Aguirre-Hernández
and Farewell (2002) using the test statistic

T ¼ Σuhk ouhk � euhkð Þ2=euhk
� �

, where u represented the

number of levels defined by the quantiles of the obser-
vation times, h represented the groupings due to the
covariate, and k was the individual whale. We assumed a
chi-squared distribution for this test statistic and used both
a liberal and a conservative number of degrees of freedom;
these were calculated as (1) the minimum number of inde-
pendent bins (7� 4� 3� 2 ¼ k � u� h� nstates) and (2)
the minimum number of independent bins minus the num-
ber of estimated parameters, np = 21, respectively.

RESULTS

Following the first two steps of our analytical
approach, we obtained estimated tracks for the seven
Blainville’s beaked whales (Fig. 1). Note that, while all
adult individuals remained in proximity of the Navy
range, the only tagged subadult engaged in a wide-
ranging trip across the region. The discrete-space
continuous-time Markov model was then used to esti-
mate the transition rates across the AUTEC range
boundaries (Table 1). Differences in baseline transition
rates among individuals were captured by the inclusion
of individual-level random effects; Figs. 2 and 3 show
that there was noteworthy variation among whales.
Appendix S1: Fig. S2 shows the estimated individual-
level random effects.

Comparing models (b) and (a), λLR ¼ 27:22 and,
under λLR ∼ χ215, PðλLR > 27:22Þ ¼ 0:02, suggesting that
the individual-level random effects should be retained.
Comparing models (c) and (a), λLR ¼ 41:56 and, under
λLR ∼ χ219, PðλLR > 41:56Þ ¼ 0:006, suggesting that the
decaying effect of exposure should be retained in the
model. Using the marginal AIC (Vaida and Blanchard
2005) also confirmed the results of the LRT (Table 1).
Using the model given by Eq. 2, we detected a

change in transition rates following exposure to sonar
activities (Table 1). The estimated β̂1 ¼ β̂1;12, β̂1;21

� �T

parameters represent the effect on the log rate of transi-
tion off-on and on-off the range, respectively, during
the time an individual was exposed to sonar. During
exposure (i.e., z tð Þ ¼ 0 in Eq. 2), transitions onto the
range (off-on) decreased (β̂1;12 ¼ �0:60) and transitions
off the range (on-off) increased (β̂1;21 ¼ 1:75). The
increase in on-off transitions during sonar exposure is
illustrated in Fig. 3, where sonar activity is indicated by
vertical gray lines.
The β̂2 ¼ β̂2;12, β̂2;21

� �T ¼ 0:78, 0:85f g parameters
describe the exponential decay to the baseline transition
rates off-on range and on-off range, respectively. Figs. 2
and 3 illustrate this exponential decay for each individ-
ual; the effect of sonar exposure on the transition rates
was estimated to end approximately 3 d after the activity
ended (i.e., when transition probabilities returned to
their baseline values).
Refitting the Markov model to 500 simulated data

sets, generated using the estimates in Table 1, suggested
that the model was able to retrieve the values of the
parameters with limited bias. The root mean squared
error (RMSE) and bias for each parameter in the simu-
lation study are given in Appendix S1: Table S6, while
the percent errors for the parameters relating to sonar
effect are shown in Appendix S1: Fig. S4.

TABLE 1. Table of estimated parameters, log-likelihood, and Akaike information criterion (AIC) values for the fitted models;
standard errors are given in brackets.

Model,
np

Random/
exposure P(t = 1)†

log-
likelihood AIC β̂0 β̂1 β̂2

Time to
fit (s)

(a), 2 −/− 0:877 0:123

0:505 0:495

	 
 �257:04 518:08 �1:65 0:18ð Þ
�0:23 0:16ð Þ

	 
 – – 0.664

(b), 17 +/− 0:858 0:142

0:525 0:475

	 
 �243:43 492:87 �1:45 0:40ð Þ
�0:14 0:40ð Þ

	 
 – – 251.8

(c), 21 +/+ 0:807 0:193

0:421 0:579

	 
 �236:26 486:51 �1:21 0:48ð Þ
�0:43 0:47ð Þ

	 
 �0:60 0:61ð Þ
1:75 0:56ð Þ

	 

0:78 1:01ð Þ
0:85 0:60ð Þ

	 

925.7

Notes: The first column gives the model name as discussed in Discrete-space continuous-time Markov model and the associated
number of parameters, np. The second column indicates whether the model includes individual random effects (random) or an expo-
sure component (exposure). For example, +/+ indicates that a model includes both components. The baseline transition rates, on

the log scale, are given by β̂0 ¼ β̂0;12, β̂0;21
� �T

. Where applicable, the changes in transition rate during exposure are given by

β̂1 ¼ β̂1;12, β̂1;21
� �T

and the decay parameters are given by β̂2 ¼ β̂2;12, β̂2;21
� �T

. The final column gives the time taken, in seconds, to
fit each model using system.time() in R 4.0.2 on a laptop computer with a 2.5 GHz processor. Here, † denotes that P t ¼ 1ð Þ is calcu-
lated at the baseline transition rate (i.e., ignoring any other effects, if there are any).
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The multiple imputation procedure allowed us to suc-
cessfully propagate the uncertainty in the telemetry
tracks across all modeling steps. A subset of 20 imputed
tracks obtained using the parameter values from the
fitted CTCRW model is shown in Appendix S1: Fig. S3
for three individuals. Uncertainty in the exact locations

of the individuals had little effect on the estimated tran-
sition rates, as suggested by the parameter values aver-
aged across the 100 fitted models (Table 2 and
Appendix S1: Fig. S4).
The comparison of observed transitions, o, with those

expected, e, for each individual k (see Goodness of fit)
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time since exposure. The vertical line indicates 3 d since exposure.
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suggested that the goodness-of-fit of the Markov model
was satisfactory Appendix S1: Fig. S4c. The Pearson-
type test returned a test statistic T ¼ 168:44; under
T ∼ χ2147, PðT > 168:44Þ ¼ 0:109, and under T ∼ χ2168,
PðT > 168:44Þ ¼ 0:476, i.e., we have no evidence to sug-
gest that observed frequencies in each bin are signifi-
cantly different from those estimated by our model.

DISCUSSION

We developed a modeling approach that quantifies the
rates at which animals move across the boundaries of a
discrete area of interest. The model can therefore be used
to describe patterns of attendance to that area. Individ-
ual differences in movement and ranging behavior,

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ID#  93232

p o
n−

of
f(t

 =
 1

)

0 5 10 15 20 25

ID#  111664

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ID#  111670

p o
n −

of
f(t

 =
 1

)

0 5 10 15 20 25

ID#  129715

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 ID#  129719

p o
n−

of
f(t

 =
 1

)

0 10 20 30 40 50 60

days since tagging

ID#  129720

0 5 10 15 20 25

days since tagging

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ID#  129721

p o
n−

of
f(t

 =
 1

)

days since tagging

FIG. 3. Fitted on-off range transition probabilities, p21 t ¼ 1ð Þ, for each of the seven Blainville’s beaked whales (derived from the
corresponding transition rates given by Eq. 2). In each plot, the vertical gray lines indicate the time of sonar events; the points rep-
resent the time of observed locations (in days) of each individual since tagging. The different horizontal asymptotes in each panel
illustrate the differences in baseline transition rates among individuals.

Article e02475; page 8 CHARLOTTEM. JONES-TODD ET AL.
Ecological Applications

Vol. 0, No. 0



which may lead to heterogeneity in area use, are explic-
itly evaluated. By fitting a movement model to the raw
telemetry tracks, uncertainty in animal relocations can
also be accounted for. Moreover, because the Markovian
component is formulated in continuous time, the
approach does not require observations regularly sam-
pled in time. These features are important, because wild-
life telemetry often involves irregular relocations with
substantial measurement error (Patterson et al. 2017).
Crucially, the method we propose can be used to investi-
gate the repulsive (or attractive) effect of a given stressor
or activity, operating either within or outside the target
area and affecting the propensity of an individual to
cross the boundaries in either direction. Our simulation
exercise showed that the model performs well at estimat-
ing transition rates and any change associated with
exposure to disturbance.
We used a CTCRW model to account for uncertainty

in animal relocations (Johnson et al. 2008, Albertsen
et al. 2015). Alternative movement models could be
fitted, depending on the sampling frequency and degree
of measurement error in the telemetry data (Patterson
et al. 2017). Irrespective of the underlying movement
model, we showed how a multiple imputation procedure
can be used to propagate any such uncertainty (Hanks
et al. 2015, Scharf et al. 2016, 2017, Buderman et al.
2018). Our results suggest that location error does not
alter the conclusions here, probably due to the size of the
target area in relation to the estimated uncertainty. In
situations where the area of interest is smaller, particu-
larly with respect to the measurement error associated
with telemetry locations, occurrence inside the area (i.e.,
an animal’s state) could become uncertain, warranting
the extension of the approach to a hidden Markov
model (Langrock et al. 2012).
In this study, we applied the proposed approach to a

specific management problem: the assessment of the
effects of exposure to military sonar operations within
navy ranges on the movement behavior of cetaceans, and
the resulting attendance of individuals to these range
areas (Nowacek et al. 2007, Southall et al. 2016,
Bernaldo de Quirós et al. 2019). When fitted to tracking
data from Blainville’s beaked whales tagged on or near
the AUTEC U.S. Navy range in the Bahamas, the model
detected a change in the animals’ movements following
exposure. Individual whales that were on the range at
the time of exposure showed an increased tendency of

leaving the range, while individuals that were outside the
range area had a lower propensity to move onto the
range, overall indicating an avoidance response to sonar.
This effect was found to last for approximately three
days after the end of the exposure, during which the
transition rates progressively returned to their baseline
values.
The implications of these results are twofold. First,

they contribute to the increasing body of evidence sug-
gesting that military sonar operations can cause changes
in the behavior of exposed beaked whales (Tyack et al.
2011, De-Ruiter 2013, Stimpert et al. 2014, Manzano-
Roth et al. 2016, Falcone et al. 2017, Harris et al. 2018,
Bernaldo de Quirós et al. 2019, Wensveen et al. 2019).
Dedicated experimental studies, as well as observational
studies, have shown that these species modify their hori-
zontal movement and diving pattern when exposed to
simulated or real sonar in this and other areas
(McCarthy et al. 2011, Tyack et al. 2011). In particular,
passive acoustic monitoring of whale echolocation clicks
has previously suggested that Blainville’s beaked whale
detections decline within the range area in AUTEC dur-
ing sonar exercises, returning to baseline levels after
approximately three days. Using the same telemetry data
we have analyzed here, and focusing only on the effects
of large-scale exercises (Submarine Command Courses),
a recent study has provided further indication that this
indeed corresponds to animals moving out of the range,
rather than cessation of acoustic vocalizations (Joyce
et al. 2020). With the proposed approach, we were able
to quantify this tendency in terms of individual transi-
tion rates, and show that avoidance emerges in response
to all sonar exercises occurring on the range. It has been
suggested that human disturbance is perceived by wild-
life as a form of predation risk, and, as such, can elicit
comparable reactions, for example attempts to move
away from the stressor (Frid and Dill 2002). A similar
response could also arise indirectly if beaked whale prey
became less available due to sonar activity (e.g., through
displacement or changes in patch characteristics). We
detected this behavioral change despite the regular expo-
sure of this population to sonar disturbance in the range
area, which poses interesting questions on the role of
tolerance, habituation, and availability of alternative
habitat (Harris et al. 2018).
Secondly, our model can support the assessment of an

individual’s aggregate exposure to a stressor (that is, the

TABLE 2. For each of the seven Blainville’s beaked whales, 100 sets of continuous-time correlated random walk (CTCRW) tracks
were imputed and the fitted model given by Eq. 2.

P(t = 1)† β̂0 β̂1 β̂2
Est. (Var.) 0:801 0:199

0:416 0:584

	 
 �1:18 0:41ð Þ
�0:44 0:24ð Þ

	 
 �0:61 3:59ð Þ
0:64 8:92ð Þ

	 

1:97 0:59ð Þ
0:98 0:52ð Þ

	 


Notes: The table shows the pooled point estimate (Est.) and variance (Var.) of each parameter, calculated following McClintock
(2017). As in Table 1, † denotes that P t ¼ 1ð Þ is calculated at the baseline transition rate.
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total duration and intensity of exposure), which is
required to evaluate the consequences of disturbance on
individual fitness and, ultimately, population dynamics
(Pirotta et al. 2018a). In particular, the model estimates
the patterns of occurrence of an individual in the area
where the stressor operates, which can then be combined
with approaches that simulate fine-scale movements. To
date, these simulations have incurred the problem that, as
time progresses, simulated individuals tend to drift away
from the target area (Frankel et al. 2002, Houser 2006,
Donovan et al. 2017), leading to unrealistic movement
patterns and thus compromising the ability to estimate
aggregate exposure over time scales that are biologically
relevant (e.g., 1 yr). The results of our model can inform
realistic simulations of the occurrence in the area where
an individual is potentially exposed, and ignore the
behavior when outside such area (although this may
require adjusting the range boundaries to account for
noise propagation and potential exposure outside the
instrumented area (Joyce et al. 2020), similarly to the
other case studies in Appendix S2). In practice, the esti-
mated transition probabilities could be used to simulate
the daily presence or absence of an individual inside the
area where it is susceptible to exposure; when present,
finer-scale approaches could be used to model its interac-
tions with the stressor inside the area. In some cases (e.g.,
when animals do not show high residency levels), this will
also save substantial computation time, which is impor-
tant when many scenarios of disturbance need to be sim-
ulated efficiently for large populations.
Model results highlighted differences among individ-

uals in transition rates and presence on the range, which
will result in heterogeneous levels of aggregate exposure
within the population (Jones et al. 2017, Pirotta et al.
2018b). Differences among individuals could be
explained by sex (Stewart 1997), age (Carter et al. 2020),
life history stage (Ersts and Rosenbaum 2003, Pack
et al. 2017), body condition (Chaise et al. 2018), expo-
sure history (Bejder et al. 2006), or social preferences
(Ersts and Rosenbaum 2003, Hauser et al. 2007). This
information, when available, could readily be incorpo-
rated into the model as fixed effects on the transition
rates. These differences are relevant because long-term
effects on individual vital rates tend to emerge from the
chronic disruption of activity budget and the impaired
ability to acquire energy (Pirotta et al. 2018a). There-
fore, characterizing variation in exposure and identifying
the proportion of the population with high exposure
level will ultimately contribute to the assessment of the
population-level consequences of disturbance resulting
from human activities, an important target for many reg-
ulatory frameworks (National Research Council 2005,
Pirotta et al. 2018a).
The application of the modeling approach to other

case studies in different U.S. Navy ranges demonstrates
some of the outstanding challenges associated with this
analysis (see Appendix S2). The model might not be
appropriate in situations where the animals rarely leave

the target area, as shown for rough-toothed dolphins
Steno bredanensis in Hawaiʻi (Baird 2016, Baird et al.
2019) and Cuvier’s beaked whales Ziphius cavirostris in
southern California (Falcone et al. 2017). In the latter
case, the short time scale of documented behavioral
responses (Falcone et al. 2017) compared to the resolu-
tion of the telemetry data further complicates the use of
the model. In that region, the model could be more
appropriate for fin whales Balaenoptera physalus, which
regularly transits in and out of the area where sonar
activities operate (Scales et al. 2017), but uncertainty
on the boundaries of such area also presents an issue.
Access to reliable information on the spatial and tem-
poral patterns of sonar occurrence is critical for the
proposed approach. The comparison of the SPORTS
database with acoustic recordings on Navy ranges has
shown that the database is prone to transcription errors
and incomplete records (Falcone et al. 2017), which
have likely contributed to the problems encountered
when fitting the model to the additional case studies.
Beyond the effects of disturbance resulting from mili-

tary sonar operations on cetacean species, our approach
can be used to quantify the exposure to any activity that
occurs within a discrete area and has either an attractive
or a repulsive effect on exposed animals. Potential exam-
ples include attendance of marine predators to fish
farms (Callier et al. 2018), changes in use of wind farm
areas by birds (Pearce-Higgins et al. 2009), attractions
to supplemental feeding sites for a range of species
(Corcoran et al. 2013), temporal variation in the use of
refuges as a function of anthropogenic risk in terrestrial
ungulates (Visscher et al. 2017), or elephant occurrence
in areas with differential human-associated mortality
risk (Graham et al. 2009). More generally, it is often
valuable to assess the probability of occurrence within
predefined regions, e.g., to evaluate the effectiveness of
the boundaries of a protected area for covering the occu-
pancy of a sufficiently large proportion of a population
(Cabeza et al. 2004, Licona et al. 2011, Lea et al. 2016),
a common application of telemetry data (Hays et al.
2019). The transition rates estimated in our model would
inform decisions regarding such boundaries.
The approach can be easily extended to model addi-

tional states, that is, additional discrete areas where indi-
vidual patterns of occurrence are of interest. For
example, the model could be used to estimate the con-
nectivity among multiple protected areas, or the degree
of usage of distinct portions of a population’s range
(Webster et al. 2002, Espinoza et al. 2015). The effect of
other covariates (e.g., environmental characteristics) on
the transitions among areas could be included to eluci-
date the ecological or anthropogenic processes influenc-
ing these movement patterns (Hanks et al. 2015,
Buderman et al. 2018).
In conclusion, we introduced a versatile method to

monitor animals’ attendance to discrete areas in contin-
uous time, and assess the effects of stressors or attractors
on the transition rates across these predefined
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boundaries. We used the method to quantify the effect
of sonar on the occurrence of a cetacean species on a
U.S. Navy range, and found changes in the propensity of
moving in to and out of this area as a result of exposure.
These results will help to assess the aggregate exposure
of individuals and any resulting population-level conse-
quences. However, we anticipate the model could have
wide applications in both applied and fundamental eco-
logical studies that use telemetry data to characterize
animal movements.
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SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2475/full

OPEN RESEARCH

Code and example data are available in the R package mmre (Jones-Todd 2021), see https://doi.org/10.5281/zenodo.4876540 and
Appendix S3. Raw Argos whale tracking data are available from the Dryad Digital Repository, https://doi.org/10.5061/dryad.
dr7sqv9zb (Jones-Todd et al. 2021). The sonar data supporting this research are not accessible to the public, but are available from
the Naval Undersea Warfare Center. To gain access please contact the Naval Undersea Warfare Center Division directly, https://
www.navsea.navy.mil/Home/Warfare-Centers/NUWC-Newport/Contact-Us/
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