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As a measure of health, body condition has been increasingly used to assess the impacts of 
environmental and physiological change on marine mammals. Such alterations can indicate 
widespread ecological effects in marine systems and inform the decision-making process to 
mitigate potential consequences to species of concern. Blue whale (Balaenoptera musculus) 
body condition in the Eastern North Pacific (ENP) has been previously assessed using 3,660 
images of 1,112 individual blue whales collected by Cascadia Research Collective (CRC) from 
2005–2018. This study expanded the body condition analysis previously done by adding CRC 
blue whale photo identification images collected in 1991, 1993, 1996 and from 2019–2023 with 
a focus on the relationship between body condition and population abundance estimates. 4,188 
images of 1,319 individuals were grouped by year, decade, region, and season to investigate 
potential differences in body condition. Cumulative link mixed models (CLMMs) were used to 
determine the influence of reproductive class, photographic qualities, season, and environmental 
variables on blue whale body condition. Additionally, potential links between ENP blue whale 
body condition and survival were assessed using Cormack-Jolly-Seber survival models. Scoring 
agreement between raters of body condition was fair–good (κw = 0.68). Blue Whale body 
condition significantly varied over the study period (χ2 = 615.47, df = 63, p < 2.2 x 10-16) and 
with sighting season (χ2 = 32.66, df = 12, p = 0.001) showing better condition later in the year. 
Of the environmental drivers explored, the Habitat Compression Index (HCI) and Oceanic Niño 
Index (ONI) best accounted for variation in blue whale body condition. Survival estimates 
ranged from 0.994 (95% CI 0.971 – 0.999) in 2008 to 0.739 (95% CI 0.389 – 0.926) in 2021 
with no significant correlation to annual body condition. Future work should investigate the 
influence of individual blue whale body condition on other measures such as reproductive 
output. These findings indicate the validity of this method of body condition assessment for use 
across multiple raters and further show the viability of body condition as an indicator of 
population health.  
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1.0 Introduction 
 

Blue whales (Balaenoptera musculus) are the largest animals on Earth; however, they have 

and continue to face the consequences of both intentional and incidental anthropogenic impacts 

(NMFS, 2022). The Eastern North Pacific (ENP) stock of blue whales (B. m. musculus) was 

historically targeted by commercial whaling vessels during the 20th century, with catches 

estimated at 3,411 from 1905–1971 (Monnahan et al., 2014). Despite these catches, a population 

model predicted that the population did not drop below 460 individuals (Monnahan et al., 2015). 

Currently, this population of blue whales is estimated at just under 2,000 individuals with a range 

that extends from their northern reaches in the Gulf of Alaska to the Costa Rica Dome and the 

Gulf of California (Bailey et al., 2009; Calambokidis & Barlow, 2020; Calambokidis et al., 

2009). Anthropogenic threats to ENP blue whales include fishing gear entanglement, vessel 

strikes, and habitat disturbance (e.g., noise pollution, shipping, fossil fuel extraction, and military 

activities) (NFMS, 2022). Blue whales are globally distributed with potentially nine distinct 

populations (Northeast Pacific, Southeast Pacific, Southwest Pacific, North Pacific, North 

Atlantic, Southern Ocean, North Indian, Southeast Indian, and Southwest Indian) identified 

through unique song types (McDonald et al., 2006).   

Blue whale migration extents appear to vary in response to prey availability, and 

movements may be limited during reproduction (Bailey et al., 2009). Tagged individuals have 

shifted feeding north to higher latitudes (Bailey et al., 2009) in response to environmental 

variation, such as the 2005 warming event in the California Current (Pierce et al., 2006), that 

negatively impacted productivity further south in their range (Thomas & Brickley, 2006). 

Eastern North Pacific (ENP) blue whales have begun to expand their ranges towards the poles 

due to rising ocean temperatures, however, it is not known if this trend has continued (Bailey et 
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al., 2009; Barlow, 2016). Although ENP blue whales were calculated by one model to be at 

carrying capacity (Monnahan et al., 2015), the stock is considered “depleted” and “strategic” 

under the Marine Mammal Protection Act (MMPA) of 1972, with blue whales listed as 

Endangered under the U.S. Endangered Species Act throughout their range (ESA; NMFS, 2022). 

Additionally, human-caused mortality currently exceeds the potential for biological removal 

(PBR) of 4.1 whales/year at 19.5 whales/year due to fisheries and vessel strike mortality (NMFS, 

2022).  

Line-transect estimates of the ENP blue whale population have shown a decreasing trend 

since the 1990s (Becker et al., 2020), while mark-recapture estimates from photo-identification 

display an increasing trend (Calambokidis and Barlow, 2020). Blue whale abundance can be 

difficult to precisely evaluate, however, mark-recapture estimates appear to show greater 

sensitivity to changes in distribution (NMFS, 2022). Modification of existing shipping lanes, to 

reduce blue whale vessel strikes, has been recommended due to identification of preferential 

habitat zones (Irvine et al., 2014). To limit anthropogenic impacts to ENP blue whales, it is 

valuable to gain a full understanding of their population status and health.  

The physiological and anatomical adaptations of marine mammals, that enable them to live 

in aquatic environments, also expose them to the variability and degradation of marine 

ecosystems (Moore, 2008). Blue whales can range up to 33m and 172 metric tons (Yochem & 

Leatherwood, 1985) and will selectively consume a maximum of two tons of euphausiids (krill) 

per day (Rice, 1978). In the Eastern North Pacific, blue whales have been documented preying 

upon two species of euphausiids (Thysanoessa spinifera and Euphausia pacifica) in the 

California Channel Islands (Fiedler et al., 1998). Additionally, blue whales in this region may 

utilize two different feeding strategies with more aggregated foraging around nearshore 
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upwelling centers and dispersed foraging around offshore areas of high productivity (Irvine et 

al., 2019).   

Marine mammal body condition, therefore, can serve as an indicator of both individual and 

ecosystem health due to the innate link between top predators and environmental variability 

(Akmajian et al., 2021; Bradford et al., 2012; Pettis et al., 2004; Moore, 2008; Wachtendonk et 

al., 2022). Measures of blubber thickness and girth have been used to assess the body condition 

of fin (Balaenoptera physalus) and sei whale (Balaenoptera borealis) carcasses (Lockyer et al., 

1985). In large whale species, health assessment scores that reflect poor body condition (e.g. low 

blubber thickness) may indicate compromised health (Pettis et al., 2004). Non-invasive, 

photographic assessments of body condition have been successfully conducted in North Atlantic 

right whales (Eubalaena glacialis; Pettis et al., 2004), gray whales (Eschrichtus robustus; 

Bradford et al., 2012), and blue whales (Wachtendonk et al., 2022). Through these 

investigations, the authors tracked changes in body mass recorded in the photographic record. 

Pettis et al. (2004) established a baseline methodology through a visual analysis of subcutaneous 

fat in North Atlantic right whales and monitored changes in body condition associated with the 

reproductive cycle. Female whales exhibited significantly lower body condition during, and post-

calving compared to the year prior to calving. In gray whales, Bradford et al. (2012) utilized a 

similar visual analysis to track within-season changes in body condition and similarly linked 

body condition with reproductive class where lactating females had significantly worse body 

condition and calf body condition remained consistent.   

These methods were further modified by Wachtendonk et al. (2022) to analyze body 

condition of blue whales in archival images collected by Cascadia Research Collective (CRC) 

from 2005 to 2018. Cascadia Research Collective is a registered non-profit, 501(c)(3) 
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organization based in Olympia, WA that currently focuses on marine mammal research along the 

West-Coast of the United States and Hawai’i (Cascadia Research Collective, 2024). Throughout 

the past 45 years of research, the organization has covered topics including bird and marine 

mammal behavior, ecology, and biology. The research goals of the institution mainly involve the 

use of photo-identification and telemetry techniques to track population dynamics of mysticetes 

(e.g. blue whales, gray whales, and humpback whales) on the U.S. West Coast and Hawaiian 

odontocetes (e.g. false killer whales, beaked whales). The results reported by Wachtendonk et al. 

(2022) showed further evidence for the correlation between body condition and reproductive 

cycles in mysticetes.   

Following the birth of large whale species, lactation is more energetically costly than 

pregnancy, and calves completely depend upon this process for survival (Lockyer, 1984; 

Soledade Lemos et al., 2020). Lactating females have displayed poor body condition relative to 

their weaning calves, both in blue whales (Wachtendonk et al., 2022) and gray whales (Bradford 

et al., 2012). However, in some cases, lactating females may fare better than other reproductive 

classes (e.g. adults and juveniles) due to large fat reserves stored towards the mid-section of the 

body (Christiansen et al., 2021).  

Due to large marine mammals' dependence on substantial energy stores (e.g., blubber), it is 

possible that reduced body condition could be linked to reduced survival and reproduction 

(Lockyer et al., 2007; Stewart et al., 2021). In gray whales, there is evidence for an association 

between reduced body condition, potentially due to starvation, and an unusual mortality event 

(UME) in 2019-2020 (Christiansen et al., 2021). Similarly, elevated mortality rates were 

observed in Southern Resident killer whales (SRKW; Orcinus orca) in poor body condition in an 

investigation from 2008 to 2019 (Stewart et al., 2021). Cormack-Jolly-Seber (CJS) mark-
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recapture models have been used to determine apparent survival in large whales including fin 

whales (Balaenoptera physalus) in the northern Gulf of St. Lawrence (Schleimer et al., 2019) 

and ENP blue whales in the Gulf of California (Whittome et al., 2024). However, to our 

knowledge, such estimates have not incorporated measures of body condition as covariates 

within models of apparent survival. 

Blue whales have been shown to respond to variations in environmental factors such as sea 

surface temperature (SST; Whittome et al., 2024), with changes in body condition occurring in 

conjunction with long-term oceanographic cycles (e.g., the Pacific Decadal Oscillation) 

(Akmajian et al., 2021; Wachtendonk et al., 2022) and upwelling (Wachtendonk et al., 2022). 

Ecosystem shifts in primary production, caused by processes such as upwelling, may influence 

zooplankton prey dynamics that can impact the body conditions of large whales (Soledade 

Lemos et al., 2020). Wachtendonk et al. (2022) correlated longer upwelling seasons (and 

negative Pacific Decadal Oscillation) with improved body condition in blue whales. This 

analysis also revealed the relationship between reduced blue whale body condition and a marine 

heatwave in the NE Pacific from 2014–2016. Despite their enormous size, the high energetic 

costs of lunge-feeding during blue whale foraging dives limit dive duration and drive their 

feeding behavior to seek out dense accumulations of euphausiids (Acevedo-Gutiérrez et al., 

2002). Additionally, blue whales may be sensitive to euphausiid population shifts because of 

their inability to dive for extended periods of time and relative dependence on highly productive 

ocean regions such as the California Current region (Acevedo-Gutiérrez et al., 2002; Croll et al., 

1998). Although blue whales forage year-round, feeding is concentrated to highly productive 

waters of the California Current Ecosystem (CCE) from June–November (Bailey et al., 2009; 

Oleson et al., 2007). For large whales, prey availability and resulting alterations in body fat 
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accumulation may be linked to reproductive success as a function of fetal growth and calf 

survival (Lockyer, 1986; Lockyer, 2007). Body condition assessments may, therefore, provide 

insights into future population dynamics and could inform policy responses in the face of 

climactic shifts.  

Human responses to alterations in the physical environment due to climate change are 

likely to impact cetaceans, including habitat loss, acoustic disturbance, and increased coastal 

development (Alter et al., 2010). Anthropogenic noise, including sonar and shipping traffic, can 

alter blue whale vocal behavior with disruptions to call production. For example, low frequency 

calls associated with foraging (D calls) are specifically impacted, despite the occurrence of noise 

disturbance at frequencies often above those utilized by blue whales (Melcón et al., 2012). 

Multiple cetacean species (including North Atlantic right whales) have altered their migration 

timing and shifted their distributions towards the poles in response to elevated sea surface 

temperatures, reduced sea ice extent, or a combination of both due to climate change (van 

Weelden et al., 2021). Similarly, ENP blue whales have appeared to demonstrate a poleward 

shift in their distribution (Bailey et al., 2009; Barlow, 2016). Variation in blue whale distribution 

is likely linked to environmental variation, as has been shown in the Gulf of California 

(Whittome et al., 2024).  

Future policy measures for climate adaptation should include the potential for impacts on 

the health of cetacean populations (Alter et al., 2010). Biologically important areas (BIAs) for 

ENP blue whale feeding have been identified and updated with an outer shoreward boundary at 

50m depth and a core boundary at 80m depth based on sighting data, satellite tag data, and line-

transect model (Calambokidis et al., 2024). Changing environmental dynamics may therefore 

impact prey species, as reported for gray whales (Soledade Lemos et al., 2020), that could have a 
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cascading effect on blue whale populations. Dynamic ocean management (DOM) strategies may 

be utilized to plan for anomalous changes in prey distribution and habitat use of large whale 

species (e.g. blue whales) that can lead to greater overlap of whale habitat and areas utilized for 

commercial activities such as shipping (Hausner et al., 2021). While a few cetacean species may 

benefit from climactic shifts due to increased habitat (such as gray whales), this may lead to 

significant reductions in suitable habitats for other species, thus impacting their health 

(vanWeelden et al., 2021). To provide adequate regulatory measures to protect these sentinels of 

ecosystem health and prevent unintended mortality, it is important to fully understand the health 

of their populations (Alter et al., 2010).  

Utilizing body condition, it is possible to understand the energetic demands of blue whales 

in the Eastern North Pacific and temporal variations in population health (Soledade Lemos et al., 

2020). Wachtendonk et al. (2022) established a scoring methodology to assess body condition 

for blue whales following similar techniques used previously for gray whales (Bradford et al., 

2012) and North Atlantic right whales (Pettis et al., 2004). This study aimed to extend the dataset 

on body condition scores for whales photographed between 2005–2018 by CRC to those 

photographed in selective years during the 1990s (1991, 1993, and 1996) and 2005–2023.The 

effect of body condition and links to abundance of ENP blue whales was investigated to assess 

the viability of this health measure as a predictor of population change. This study further aimed 

to explore the links between body condition and environmental indices of productivity with a 

broader dataset than initially utilized in Wachtendonk et al. (2022). Additionally, apparent 

survival was estimated for blue whales from 2005–2023 using mark-recapture methods to 

investigate the potential influence of body condition. Body condition was predicted to vary 

across years in accordance with Wachtendonk et al. (2022). Furthermore, given the seasonal 
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nature of blue whale feeding behavior, body condition was hypothesized to increase throughout 

the feeding season (June–November).  Although there is some evidence for a relationship 

between body condition and survival in other cetaceans, body condition was not predicted to 

impact estimates of within-year apparent survival due to the long-lived nature of blue whales.  

 
2.0 Materials and Methods 
 
2.1 Photo Identification  

Blue whale photographs were collected during annual photo identification efforts by CRC 

during 1991, 1993, and 1996 and from 2005–2023 along the West Coast of North America under 

NMFS permit #21678-01. This project extended the dataset of body condition scores (3,660 

previously assessed images of 1,112 individual whales from 2005–2018) using methodology 

developed by Wachtendonk et al. (2022) with eight additional years of photo identification data 

(1991, 1993, 1996 & 2019–2023). Images from 1991, 1993, and 1996 were captured with a 

single lens reflex (SLR) camera on black and white film while images from 2005–2023 were 

captured in color on a digital SLR camera. Film images were viewed on a light table for 

inspection prior to scanning and were selectively digitized using the Nikon Super CoolScan 5000 

ED at 4000 DPI. Scanned images were exported as .TIF files to maximize image quality for body 

condition analysis. Film photographs were scored using the same criteria as digital images. For 

all years, sightings without suitable photographs (e.g. only flukes visible) were not included in 

the analysis. This resulted in a dataset of 4583 sightings of 1376 individuals in 1991, 1993, 1996 

and 2005–2023.  

 

2.2 Body Condition Scoring   
  

 Lateral photographs were utilized for body condition scoring, with a preference for those 
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that displayed the most area forward of the dorsal fin. Blue whale photo ID focuses on the left 

and right lateral aspects of individual whales, which provides a way to measure individual body 

condition; this allows for analysis of archival images taken without the goal of body condition 

assessment. When lateral photographs are unavailable or of inadequate quality, photographs 

taken from behind or at a 45-degree angle to the whale will be scored as an alternative. 

Following Wachtendonk et al. (2022), blue whale reproductive class was determined 

based on calf presence. Females photographed with a calf in a year were considered a “lactating 

female” for that entire year within this analysis. Similarly, calves were grouped within the “calf” 

reproductive class for the year they are first sighted with their mother. Individuals with unknown 

reproductive status were considered as “other.” Images were scored based on the body condition 

scoring scheme for blue whales developed by Wachtendonk et al. (2022) that was modified from 

methodologies established for determining the body condition of North Atlantic right whales 

(Pettis et al., 2004) and western gray whales (Bradford et al., 2012).  Briefly, this method scores 

body condition on a 4-point ordinal scale from 0–3 based on the outlined criteria (Table 1). 

Examples of these criteria visualized in field photographs are provided in Figure 1. Photograph 

quality and visible proportion were also assessed using a scale from 1 (high quality/high 

proportion visible)–3 (low quality/low proportion visible) during image analysis. The presence of 

an arched back in photographs was additionally noted. 
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Table 1. Definitions of body condition scores.  
Body Condition Score Definition 

0, Good Rounded sides of whale and no visible vertebrae 

1, Moderately good 
 

Dorsal ridge visible with possible evidence of vertebrae 

2, Moderately poor More defined dorsal ridge and vertebrae visible 

3, Poor 
Clearly defined dorsal ridge and multiple vertebrae easily 

detectable 
 
 

 
Figure 1. Representative images of scoring scheme visualization adopted from Wachtendonk et 
al. (2022). 0) Score 0, good body condition, clearly rounded shape. The red box represents the 
ideal section of the body for assessment of body condition. 1) Score 1, moderately good body 
condition with pronounced dorsal ridge. 2) Score 2, moderately poor body condition, evidence of 
vertebrae. 3) Score 3, poor body condition, clear presence of vertebrae. All images were taken by 
Cascadia Research Collective, NMFS Permit # 21678-01.   
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2.3 Inter-rater Reliability 

To ensure continuity of the dataset, a 2-month training period occurred whereby body 

condition scores for three subsets of 10 images from the CRC blue whale database were 

compared between the primary analyst for this project (Jessie Meyer; JM) and the previous 

analyst (Rachel Wachtendonk; RW) of blue whale photographs from 2005–2018. Scores were 

then compared to ensure consistency in scoring methodology between raters. For the final 

analysis, a larger subset of images (~10% of digital and ~10% of film images) selected through 

proportional stratified random sampling was scored by Rater 1 (JM) and Rater 2 (RW). Three 

images within the subset were excluded from the analysis due to inadequate quality for scoring 

(90 images total). Scores were compared using weighted kappa coefficients (κw; Cohen, 1968) 

following Bradford et al. (2012) for inter-rater reliability of ordinal measures in the software R 

(v4.3.3; R Core Team, 2024) using the irr package (Gamer et al., 2019). κw was calculated using 

quadratic weights to account for distances between scores. Weighted kappa statistics were 

interpreted following Fleiss (1981) with κw > 0.75 as “excellent”, 0.75 < κw < 0.40 as “fair–

good” and κw < 0.4 as “poor” agreement. Cohen’s kappa (κ; Cohen, 1960) was used to test for 

agreement between ratings of arch presence or absence in score photographs. Cohen’s kappa 

statistics were interpreted as κ 0.01–0.20 (none–slight), κ 0.21–0.40 (fair), κ 0.41–0.60 

(moderate), κ 0.61–0.80 (substantial), and κ 0.81–1.00 (almost perfect). 

 

2.4 Body Condition Comparisons 
  

Whales within each body condition score were summed and grouped by year, decade, 

geographic region, and season sighted. Geographic regions were binned by an internal identifier 
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(LocCode) based on latitude with the resulting groups of Mexico (LocCode 24–26; latitude 25–

32), Southern California (LocCode 31–42; latitude 32–37), Central California (LocCode 51–59; 

latitude 34–39), Northern California (LocCode 61–63; latitude 39–42 ), Pacific Northwest 

(LocCode 71–75; latitude 42–47).  Five seasons were defined as Early Season (January–May), 

June & July, August, September, and late season (October–December). These groupings were 

used to account for smaller sample sizes (n < 1000) from January–May, June–July and October–

December. Data from Mexico were excluded in analyzing seasonal variation of body condition 

to examine individuals feeding in productive waters off the U.S. West Coast from Southern 

California to Washington. Chi-squared goodness of fit tests were utilized to assess the presence 

of statistically significant relationships between scores of year, decade, region and season groups 

across the study period using the software R. Images with a proportion seen or an image quality 

score of 3 were excluded from the final analysis due to significant differences between body 

condition scores when grouped by image quality (χ2 = 37.85, df = 6, p =  1.2 x 10-6) and 

proportion seen (χ2 = 88.87, df = 6, p < 2.2 x 10-16). 4,188 encounters of 1,319 individuals were 

examined as the final dataset after filtering.  

 

2.5 Cumulative Link Mixed Modeling 
 

Following Wachtendonk et al. (2022), cumulative linked mixed models (CLMMs) were 

created using the ordinal package (Christensen, 2019) in R to assess factors that may explain 

variations of blue whale body condition score. Components of the models investigated include 

RepClass (reproductive class; calf, lactating female, or other), Month (month of sighting), 

Month_group (season of individual sighting), BestQuality (quality of best image), and BestProp 

(proportion of whale seen in best image) with Year (year of sighting) and ID (identification 
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number of an individual) as random effects to account for pseudoreplication. We also 

investigated the inclusion of the following environmental covariates into a model of blue whale 

body condition: PDO.Value (Pacific Decadal Oscillation; average annual value), PDO (positive 

or negative), relative CPUE (Catch Per Unit Effort; average annual value) of krill, BEUTI 

(Biologically Effective Upwelling Transport Index; average annual value), Heatwave (the 

presence or absence of a marine heatwave from 2014–2016), HCI (Habitat Compression Index; 

average annual value), and ONI (Oceanic Niño Index; average annual value). This served to 

further explore the findings from Wachtendonk et al. (2022) that linked body condition to 

variations in environmental productivity and upwelling. 

The PDO is the dominant pattern of SST fluctuations in the North Pacific (Mantua et al., 

1997). Relative CPUE of krill serves as a proxy to krill abundance, which was used to measure 

the effect of prey population changes in relation to body condition. The BEUTI estimates vertical 

nitrate flux (i.e. upwelling of nitrates) within the water column (Jacox et al., 2018). HCI is 

derived from satellite observations of sea-surface temperature and outputs of ocean models 

describing the cool, nearshore (< 150 km from the coast) waters in the CCE (Schroeder et al., 

2022). Higher HCI values represent expanded cool water habitat whereas lower HCI values 

indicate compressed cool water habitat (Schroeder et al., 2022). ONI, as a measure of the El 

Niño Southern Oscillation (ENSO), generally shows the opposite pattern from HCI with reduced 

upwelling occurring in the CCE during tropical El Niño years (Santora et al., 2020).  

Sources of environmental indices and definitions are summarized in Table 2. Kruskal-

Wallis tests were utilized to assess significant variation in each environmental covariate across 

the study period. This analysis utilized the Akaike’s Information Criterion (AICc) adopted for 

small sample sizes (Akaike, 1973). The R package AICcmodavg (Mazerolle, 2023) was used to 
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create model selection tables. 

 

Table 2. Sources and definitions of environmental indices included in CLMMs. 

Index Abbreviation 
Spatial 
Coverage 

Months 
Included Source 

Biologically Effective 
Upwelling Transport 
Index 

BEUTI 31-39N Jan-Dec 
mjacox.com/upwelling-
indices/ 

Catch Per Unit Effort 
(krill) CPUE 32-42N Jan 

oceanview.pfeg.noaa.gov/
whale_indices/ 

Habitat Compression 
Index 

HCI 35-40N Jun-Oct 
oceanview.pfeg.noaa.gov/
whale_indices/ 

Oceanic Niño Index ONI 5N-5S Jan-Dec 
oceanview.pfeg.noaa.gov/
whale_indices/ 

Pacific Decadal 
Oscillation 

PDO 20-70N Jan-Dec 
ncdc.noaa.gov/teleconnecti
ons/pdo/ 

 
 
2.6 Survival 

Apparent survival of ENP blue whales from 2005–2023 was estimated using Cormack-

Jolly-Seber (CJS) open mark-recapture models in R based on annual capture histories.  

Methodology for the CJS analysis was modified from Schleimer et al. (2019). Prior to model 

fitting, goodness-of-fit component tests were performed on the dataset using the R package 

R2UCARE (Gimenez et al., 2017). The software MARK (White & Burnham, 1999) was utilized 

to run the CJS models through the RMark interface (Laake, 2013) in R.  

First, the Overall_CJS test indicated a lack of fit (χ2 = 245.42, df = 106, p = 0). Second, 

the 2.CT test (χ2 = 75.37, df = 16, p = 0.000) also indicated a lack of fit. The probability of 

recapture (p) was allowed to differ as a constant (.), which varied by annual sampling occasion 

(t) and was modeled to account for the lack of fit with the 2.CT test. A lack of fit with test 3.SR 

test (χ2 = 72.51, df = 17, p = 0.000) was accounted for by modeling survival as two “transience” 
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class (tr). The 2.CL test (χ2 = 80.02, df = 43, p = 0.001) additionally indicated a lack of fit while 

the 3.SM test (χ2 = 17.52, df = 30, p = 0.966) did not. However, a lack of fit for either the 2.CL 

or 3.SM necessitates accounting for overdispersion within the model. Trap dependence effect 

(td) was modeled as an individual time varying covariate; recapture probabilities can vary based 

on if an individual has been sighted (“captured”) within in a prior year.  

Annual survival probability (φ) was modeled as a constant (.), which varied by annual 

sampling occasion (t). Yearly average body condition score (score) of ENP blue whales was 

included as a covariate. Since average scores were an annual value, t and score were not included 

within the same model. Models allowed additive (+) and interactive (*) effects. The Akaike’s 

Information Criterion (AICc) adopted for small sample sizes was used, similar to the CLMMs 

(Akaike, 1973). Lastly, an overall χ2 was adjusted to remove the 2.CT and 3.SR tests after 

modelling the trap dependence and transience effects. Thereby, a variance inflation factor (ĉ) 

was calculated (as total GoF χ2 /degrees of freedom) which indicated a lack of fit (χ2 = 97.54, df  

= 73, p = 0.03; ĉ = 1.34). Accordingly, AICc were adjusted to quasi-AICc (QAICc). 

In addition, resighting rates were used to determine if blue whales were more or less 

likely to be resighted as a function of their body condition. The last known sighting of an 

individual whale, with an associated body condition score, from 1991-2009 was utilized for this 

analysis. Years after 1996 (2005-2009) were included to account for the small sample sizes of 

whales in poor or moderately poor body condition during years in the 1990s. The “recapture” 

period was defined as 2010-2023. Lactating females were excluded due to the previously 

reported energetic expenditure of lactation and resulting impacts to blue whale body condition 

(Wachtendonk et al., 2022).  
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3.0 Results 

There were a total of 4,188 images of 1,319 individual blue whales collected over 22 

years of small boat operations that were scored for this analysis.  Blue whale sightings were 

classified by reproductive class of the individual with 85 as “lactating female”, 60 as “calf”, and 

4,043 as “other”. Across the dataset 35.1% of whales were in good body condition (score 0), 

33.1% were in moderately good body condition (score 1), 18.5% were in moderately poor body 

condition (score 2), and 13.3% were in poor body condition (score 3). 

 

Inter-rater Reliability 

There was fair–good agreement between raters of body condition score (Table 3; κw = 

0.68) for 90 images of blue whales utilized in the final analysis. The percentage agreement 

between Rater 1 (Jessie Meyer; JM) and Rater 2 (Rachel Wachtendonk; RW) was 63.33%. 

Investigating this further there was better agreement among scores of 0 & 1 (κw = 0.42) 

compared to scores of 2 & 3 (κw = 0.26). When accounting for photograph type (e.g., film or 

digital), there was higher agreement (κw = 0.69) in scores for the digital years (2005–2023) than 

the film years (1991, 1993, and 1996; κw = 0.60). For the additional components of image 

analysis, there was fair–good agreement between raters for proportion seen score (κw = 0.67) and 

image quality score (κw = 0.65). Raters consistently scored the presence of an arched back within 

the photograph with almost perfect agreement (κ = 0.82). Lastly, when removing images given 

proportion seen or quality scores of 3 by JM, there was fair–good agreement (κw = 0.63). There 

was similar agreement when filtering out images given proportion seen or quality scores of 3 by 

RW (κw = 0.60). 
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Table 3. Body condition score agreement between Rater 1 (Jessie Meyer; JM) and Rater 2 
(Rachel Wachtendonk; RW) for 90 randomly selected images. 

Rater 1   Rater 2 Total 
  0 1 2 3  

0 29 12 0 0 41 
1 9 23 0 0 32 
2 1 7 4 1 13 
3 0 0 3 1 4 

Total 39 42 7 2 90 
 

 

Body Condition Across Time 

The mean (±SE) number of sightings in each year was 190.36 (±25.53). The lowest 

number of sightings occurred in 2022 (Figure 2; n = 46) while the highest number of sightings 

occurred in 2010 (Figure 2; n = 415). Within each decade, there was a mean (±SE) number of 

sightings of 1047 (±481.03) with the highest number of sightings in the 2010s (Figure 3; n = 

2383) and the lowest number of sightings in the 2020s (Figure 3; n = 340). Body condition 

scores varied significantly with year (Figure 2; χ2 = 615.47, df = 63, p < 2.2 x 10-16) and decade 

(Figure 3; χ2 = 201.07, df = 9, p < 2.2 x 10-16). The proportion of whales in good body condition 

(score 0) varied widely from a low of 13.5% in 2017 to a high of 66.8% in 1996; the proportion 

of whales in poor body condition (score 3) also varied from 0.5% in 1996 to 21% in 2015. Over 

50% of whales in 2015 (during a marine heatwave) & in 2017 (post marine heatwave) were in 

poor (score 3) and moderately poor (score 2) body condition.  

The percentage of whales in good body condition (score 0) exceeded 50% in 1993, 1996, 

and 2010. Accordingly, whales in the 1990s were more likely to be in good body condition 

(58.5% score 0) than whales in 2000s (36.7% score 0), 2010s (32.4 % score 0), and 2020s 

(25.3% score 0). Furthermore, whales in the 2010s had a higher probability of being in poor 
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body condition (17.4% score 3) than in the 1990s (0.8% score 3), 2000s (10.6% score 3), and 

2020s (6.5% score 3).  

 

 
Figure 2. Proportional representation of ENP blue whale (Balaenoptera musculus) body 
condition score (scale of 0 to 3) within each year from the 1990s (1991, 1993, and 1996) and 
every year between 2005–2023. The red box indicates the occurrence of a marine heatwave in 
California Current from 2014-2016. 
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Figure 3. Proportional representation of body condition score of ENP blue whales grouped by 
decade across the study period.   
 

Region & Seasonality 

Across regions, the highest number of sightings occurred in Southern California (Figure 

4; n = 2908) with the lowest number of sightings in Northern California (Figure 4; n = 99). The 

mean (±SE) number of sightings grouped by region was 837.6 (±531.84). The association 

between body condition and geographic regions of the West Coast of North America was 

statistically significant (Figure 4; χ2 = 54.96, df = 12, p = 1.84 x 10-7). Whales spotted in 

Northern California were more likely to be in good body condition (40.4% score 0) compared to 

Mexico (39.8% score 0), Southern California (35.9% score 0), Central California (31.0% score 
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0), and the Pacific Northwest (30.8% score 0). Interestingly, whales in Mexico had a higher 

probability of being in poor body condition (14.8 % score 3) than whales in Southern California 

(14.7% score 3), Central California (9.2% score 3), Northern California (8.1% score 3), and the 

Pacific Northwest (9.4 % score 3). 

 

 
Figure 4. Proportional representation of body condition score of ENP blue whales grouped by 
region sighted across the study period.  
 

When grouped by season (excluding data from Mexico) the mean (±SE) number of 

sightings was 790.4 (±249.49) with the most sightings occurring in August (Figure 5; n = 1431) 

and the least number of sightings occurring in the early season (January–May; Figure 5; n = 48). 

There was also a statistically significant relationship between season of sighting and blue whale 
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body condition (Figure 5; χ2 = 32.66, df = 12, p = 0.001). Whales in late season (October–

December) sightings were more likely to be in good body condition (38.8% score 0) compared to 

whales in early season (10.4% score 0), June & July (34.3% score 0), August (35.7% score 0), 

and September (33.9% score 0). Additionally, whales sighted in late season also had a lower 

probability of being in poor body condition (10.4% score 3) than whales sighted in early season 

(18.8% score 3), June & July (13.3% score 3), August (14.6% score 3), and September (12.0% 

score 3). 

 

 

 
Figure 5. Proportional representation of body condition score of ENP blue whales grouped by 
season (excluding data from Mexico) sighted across the study period. Time periods are 
categorized by Early Season (January–May), June & July, August, September, and Late Season 
(October–December).  
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Cumulative Link Mixed Modeling 

Incorporating seasonality (Month_group) as a covariate in a cumulative linked mixed 

model of blue whale body condition score improved the model (Table 4). The most parsimonious 

model included the covariates of reproductive class (RepClass), seasonality (Month_group), 

image quality (BestQuality), and proportion of image seen (BestProp) with year and ID as 

random effects. Significant components of the top model were reproductive class being a 

lactating female (p < 2.0 x 10-16), reproductive class as “other” (p = 1.15 x 10-8), season 

classified as “early season” (p = 0.025), season classified as “late season” (p = 8.64 x 10-8), 

season classified as “September” (p = 0.027), quality of best image (linear, p = 0.029), and 

proportion of best image seen (linear, p = 0.000).       

 When testing the updated base model with the dataset analyzed in Wachtendonk et al. 

(2022), seasonality improved the fit to the scoring dataset (Table 5). The top two models, based 

on AICc, included seasonality as a covariate within the model. Within the most parsimonious 

model, significant components were reproductive class being a lactating female (p < 2.0 x 10-16), 

reproductive class as “other” (p = 5.89 x 10-6), season classified as “early season” (p = 0.005), 

season classified as “late season” (p = 1.54 x 10-5), season classified as “September” (p = 0.014), 

and quality of best image (linear, p = 0.000).  

 Of the environmental covariates included in this analysis, HCI (Habitat Compression 

Index) best explained variation in body condition scores (Table 6). The second-best model, as 

determined by ΔAICc < 2, included ONI (Oceanic Niño Index). HCI varied significantly across 

the study period (1991–2023; Figure 6a; Kruskal-Wallis χ2 = 94.22, df = 32, p = 4.81 x 10-8) 

while ONI also significantly fluctuated across the same period (Figure 6b; Kruskal-Wallis χ2 = 

213.83, df = 32, p < 2.2 x 10-16). Significant components of the top model were reproductive 
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class being a lactating female (p < 2 x 10-16), reproductive class as “other” (p = 1.06 x 10-8), 

season classified as “early season” (p = 0.024), season classified as “late season” (p = 7.93 x 10-

8), season classified as “September” (p = 0.028), quality of best image (linear, p = 0.027), 

proportion of best image seen (linear, p = 0.000), and HCI (p = 0.03). 

 

Table 4. All base models tested with sightings from 1991, 1993, 1996 and 2005–2023. Models 
are listed from lowest to highest AIC value. The most parsimonious model is displayed in bold; 
the base model used in Wachtendonk et al. (2022) is italicized. 
Model  K  AICc  ΔAICc  AICcWt  
Score~ RepClass + Month_group + BestQuality + 
BestProp + (1|Year) + (1|ID)  13  9597.43  0.00  0.8  

Score~ RepClass + Month_group + BestProp + (1|Year) + 
(1|ID)  

12  9600.23  2.79  0.2  

Score~ RepClass + Month_group + BestQuality + 
(1|Year) + (1|ID)  

12  9609.87  12.43  0.0  

Score~ RepClass + Month_group + (1|Year) + (1|ID)  11  9613.43  15.98  0.0  

Score~ RepClass + Month + BestQuality + BestProp + 
(1|Year) + (1|ID)  

10  9621.95  24.52  0.0  

Score~ RepClass + Month + BestProp + (1|Year) + (1|ID)  9  9623.69  26.25  0.0  

Score~ RepClass + BestQuality + BestProp + (1|Year) + 
(1|ID)  

9  9625.74  28.30  0.0  

Score~ RepClass  + BestProp + (1|Year) + (1|ID)  8  9627.39  29.96  0.0  

Score~ RepClass + Month + BestQuality + (1|Year) + 
(1|ID)  

9  9634.02  36.59  0.0  

Score~ Month_group + BestQuality + BestProp + 
(1|Year) + (1|ID)  

11  9773.39  175.96  0.0  

Score~ Month_group + BestProp + (1|Year) + (1|ID)  10  9775.36  177.92  0.0  

Score~ Month_group + (1|Year) + (1|ID)  9  9787.17  189.73  0.0  

Score~ Month + BestQuality + BestProp + (1|Year) + 
(1|ID)  

8  9799.15  201.71  0.0 

Score, body condition score; RepClass, reproductive class (calf, lactating female, or other); 
Month_group, season of individual sighting; BestQuality, quality of best image; BestProp, 
proportion of whale seen in best image. K, number of parameters; AICc, Akaike’s Information 
Criterion for small sample size; AICcWT, AICc weight. 
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Table 5. All base models tested utilizing the original dataset (2005–2018) analyzed in 
Wachtendonk et al. (2022). Models are listed from lowest to highest AIC value. The most 
parsimonious model is displayed in bold; the base model used in Wachtendonk et al. (2022) is 
italicized. 
Model  K  AICc  ΔAICc  AICcWt  
Score~ RepClass + Month_group + BestProp + (1|Year) + 
(1|ID)  12  8050.67  0.00  0.59  

Score~ RepClass + Month_group + BestQuality + BestProp + 
(1|Year) + (1|ID)  

13  8051.43  0.76  0.40  

Score~ RepClass + Month_group + (1|Year) + (1|ID)  11  8061.85  11.18  0.00  
Score~ RepClass + Month_group + BestQuality + (1|Year) + 
(1|ID)  

12  8062.32  11.65  0.00  

Score~ RepClass  + BestProp + (1|Year) + (1|ID)  8  8069.10  18.43  0.00  

Score~ RepClass + Month + BestProp + (1|Year) + (1|ID)  9  8070.09  19.42  0.00  

Score~ RepClass + BestQuality + BestProp + (1|Year) + (1|ID)  9  8070.32  19.65  0.00  

Score~ RepClass + Month + BestQuality + BestProp + (1|Year) 
+ (1|ID)  

10  8071.29  20.62  0.00  

Score~ RepClass + Month + BestQuality + (1|Year) + (1|ID)  9  8081.13  30.46  0.00  

Score~ Month_group + BestProp + (1|Year) + (1|ID)  10  8192.03  141.36  0.00  
Score~ Month_group + BestQuality + BestProp + (1|Year) + 
(1|ID)  

11  8193.19  142.51  0.00  

Score~ Month_group + (1|Year) + (1|ID)  9  8202.28  151.61  0.00  

Score~ Month + BestQuality + BestProp + (1|Year) + (1|ID)  8  8212.80  162.12  0.00 

Score, body condition score; RepClass, reproductive class (calf, lactating female, or other); 
Month (month of sighting); Month_group, season of individual sighting; BestQuality, quality of 
best image; BestProp, proportion of whale seen in best image. K, number of parameters; AICc, 
Akaike’s Information Criterion for small sample size; AICcWT, AICc weight. 

 

 

 

 

 

 

 

 



 

25 
 

 

Table 6. Most parsimonious base model tested with each environmental covariate. Models are 
listed from lowest to highest AIC value. The most parsimonious model is displayed in bold. 
 
Model  K  AICc  ΔAICc AICcWt  
Score~ RepClass + Month_group + BestQuality + BestProp + 
HCI + (1|Year) + (1|ID)  14  9595.26  0.00  0.40  

Score~ RepClass + Month_group + BestQuality + BestProp + 
ONI + (1|Year) + (1|ID)  

14  9597.24  1.98  0.15  

Score~ RepClass + Month_group + BestQuality + BestProp + 
HeatWave + (1|Year) + (1|ID)  

14  9597.43  2.17  0.13  

Score~ RepClass + Month_group + BestQuality + BestProp + 
RelativeCPUE + (1|Year) + (1|ID)  

14  9597.91  2.65  0.11  

Score~ RepClass + Month_group + BestQuality + BestProp + 
BEUTI + (1|Year) + (1|ID)  

14  9598.07  2.82  0.10  

Score~ RepClass + Month_group + BestQuality + BestProp + 
PDO + (1|Year) + (1|ID)  

14  9598.72  3.46  0.07  

Score~ RepClass + Month_group + BestQuality + BestProp + 
PDO.Value + (1|Year) + (1|ID)  

14  9599.44  4.18  0.05 

 
Score, body condition score; RepClass, reproductive class (calf, lactating female, or other); 
Month_group, season of individual sighting; BestQuality, quality of best image; BestProp, 
proportion of whale seen in best image; HCI, Habitat Compression Index; ONI, Oceanic Niño 
Index; HeatWave, presence or absence of a heatwave; RelativeCPUE,  Relative Catch Per Unit 
Effort (krill); BEUTI, Biologically Effective Upwelling Transport Index; PDO, Pacific Decadal 
Oscillation (positive or negative); PDO.Value, Pacific Decadal Oscillation value. K, number of 
parameters AICc, Akaike’s Information Criterion for small sample size; AICcWT, AICc weight. 
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Figure 6. Mean (±SE) A) Habitat Compression Index (HCI) and B) Oceanic Niño Index (ONI) 
along the U.S West Coast from 1991–2023. 
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Survival Modeling 
 

Although the most parsimonious model, as suggested by QAICc, contains body condition 

score as a covariate, the model with the third lowest QAICc has a much lower QDeviance. This 

evidence suggests that the model φ (~t + tr) p (~t * td) explains more variability in the dataset 

with lower uncertainty (Table 7). The model excluding body condition is penalized for the higher 

number of parameters (55 parameters) compared to a model with body condition (39 

parameters), which QAICc suggests as the top model. Based on these models we conclude that 

there is little evidence that average body condition can explain within-year variation in blue 

whale survival.  

From 2006–2022 there was variation in apparent survival (including emigration; hereby 

referred to as “survival”) estimates with relatively higher within-year survival before 2010 

(except for 2006) compared to after 2020 (Figure 7a). The highest estimate of survival was 0.994 

(95% CI 0.971 – 0.999) in 2008, while the lowest estimate was 0.739 (95% CI 0.389 – 0.926) in 

2021. However, estimates from 2013, 2020, 2021, and 2022 contain high uncertainty. The 

recapture rate for the model φ (~t + tr) p (~t * td) generally decreased throughout the study 

period (Figure 7b). The year with the highest rate of recapture was 2007 (0.478; 95% CI 0.325 – 

0.637), while the lowest rate of recapture occurred in 2015 (0.054; 95% CI 0.033 – 0.086). There 

was no significant correlation between average body condition score and survival rates 

(estimated from φ (~t + tr) p (~t * td)) utilizing a linear regression model (Figure 8; F = 0.03, p = 

0.864, Multiple R2 = 0.002). The survival estimate from 2013 was removed from this analysis 

due to high uncertainty. 

There was no significant difference in the proportion of whales resighted among different 
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body condition scores (Figure 9; χ2 = 3.88, df = 3, p = 0.275) though these did follow an apparent 

trend of whales in poorer body conditions being resighted less often than those in good body 

condition. Regardless of body condition, whales were equally likely to be resighted within the 

“recapture” period (2010 – 2023). Nonetheless, the highest proportion of resighted whales 

(0.722) were in good body condition (score 0) at the last sighting while the lowest proportion of 

resighted whales (0.587) were in poor body condition (score 3) at the last sighting. 

 

Table 7. CJS models based on ENP blue whale sightings from 2005 to 2023. φ: apparent survival 
probability, p: recapture probability, t: annual sampling occasion, tr: transience class, score: 
average body condition score, td: trap dependence, +: additive effect, *: interactive effect. 
Model Parameters QAICc ΔQAICc Weight QDeviance 
φ (~tr + score) p (~t * td) 39 4131.71 0 0.46038 4051.866 

φ (~tr * score) p (~t * td) 40 4131.91 0.2015771 0.41624 4049.972 

φ (~t + tr) p (~t * td) 55 4135.64 3.927187 0.06462 4021.961 

φ (~tr + score) p (~t + td) 22 4136.62 4.9101665 0.03953 4092.029 

φ (~tr * score) p (~t + td) 23 4138.48 6.763989 0.01564 4091.829 

φ (~t + tr) p (~t + td) 38 4141.42 9.7084599 0.00359 4063.668 

φ (~t * tr) p (~t * td) 72 4155.17 23.4605412 3.7E-06 4004.832 

φ (~t * tr) p (~t + td) 55 4156.93 25.2214357 1.5E-06 4043.255 

φ (~t * tr) p (~td) 38 4230.87 99.1613377 0 4153.121 

φ (~t + tr) p (~td) 21 4233.31 101.6010395 0 4190.772 

φ (~tr + score) p (~td) 5 4255.8 124.0829952 0 4245.76 

φ (~tr * score) p (~td) 6 4257.06 125.349439 0 4245.012 
φ, apparent survival probability; p, recapture probability; t, annual sampling occasion; tr, 
transience class score, average body condition score; td, trap dependence; +, additive effect; *, 
interactive effect; QAICc, quasi Akaike’s information criterion for small sample sizes. 
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Figure 7. Within-year A) apparent survival and B) recapture rate of ENP blue whales from 2006-
2022 (φ (~t + tr) p (~t * td)). Error bars represent upper and lower 95% confidence intervals. 
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Figure 8. Linear regression model of apparent survival against average body condition score for 
ENP blue whales from 2006-2022. 
 

Figure 9. Proportion of ENP blue whales within each body condition score category at last 
sighting resighted from 2010–2023. A score of 0 indicates good body condition, 1 indicates 
moderately good body condition, 2 indicates moderately poor body condition, and 3 indicates 
poor body condition.   
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4.0 Discussion 
 

Although there were some discrepancies in scoring between raters, the finding of fair– 

good agreement between raters is consistent with reports of inter-rater reliability in body 

condition scoring of other marine mammals. In body condition scoring of gray whales, Bradford 

et al. (2012) reported fair to excellent agreement (κ = 0.58–0.83). Notably, the agreement 

between raters of post-cranial condition on a 3-point ordinal scale, using linear weighted kappa 

coefficients (κw = 0.65), was similar to agreement between body condition scores reported within 

this study (κw = 0.68). Our finding of the highest inter-rater agreement when scoring for the 

presence or absence of an arch is consistent for ratings on smaller scales (2 options vs. 4 options) 

(Bradford et al., 2012). Although there was slightly better agreement in scores of digital images 

compared to film images, these scores remained within a range of fair– good agreement. Body 

condition assessments of short-beaked common dolphins (Delphinus delphis) on a 4-point 

ordinal scale have also shown moderate-strong agreement between raters (Kendall’s W = 0.664) 

using non-parametric methods (Joblon et al., 2008). These findings suggest that the methods of 

blue whale body condition scoring outlined in Wachtendonk et al. (2022) are applicable for 

different qualified raters across varied photographic formats (film & digital).  

Since the 1990s, blue whale body condition has fluctuated with a greater proportion of 

whales in poor and moderately poor body condition during the past two decades.  However, there 

has been a slight increase in abundance since the 1990s according to the most recent mark-

recapture estimates (Calambokidis & Barlow, 2020). This is concurrent with evidence suggesting 

that this population has reached its carrying capacity (Monnahan et al., 2015). Nonetheless, the 

discrepancy between mark-recapture abundance estimates and those estimated from line-transect 

surveys (Barlow, 2016), which show decline since the 1990s, provides some uncertainty. Given 
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the northward shift in blue whale distribution since the 1990s (Bailey et al., 2009; Barlow, 2016; 

Calambokidis et al., 2009; Whittome et al., 2024), apparent changes in ENP blue whale body 

condition may be due to appearance of different individuals during photo-identification efforts. 

Most sightings within this study occurred along the coasts of Southern and Central California 

during the months of June – September. Body condition scores across time may be representative 

of varying subsets of the ENP blue whale population that utilize the highly productive upwelling 

regions of the California Current. This is further supported by age and sex-specific differences in 

migratory strategies (Blevins et al., 2022) and the low resighting rates within the study period. 

Consistent with Wachtendonk et al. (2022), the years with the worst body condition throughout 

the study period (2015 & 2017) were during and in a year immediately following the 2014 – 

2016 marine heatwave in California Current. Relating trends in blue whale body condition to 

prey abundance, relative krill biomass was lower in 2015 and 2016 during the marine heatwave 

and ~30% higher in 2013 and 2018 (Dorman et al., 2023). In years following the heatwave, the 

slight increase in body condition may be linked to increased krill biomass.  

Sighting season had a significant impact on body condition of blue whales sighted off the 

U.S. West Coast. This trend is generally reflected by differences in body condition across 

geographic regions; as ENP blue whales migrate northward body condition tends to improve. 

However, whales sighted in the Pacific Northwest do not appear to follow this trend. For ENP 

blue whales, recently identified biologically important feeding areas are centered around the 

California Current region (Calambokidis et al., 2024) which is reflected by the relatively good 

body condition of whales sighted in Northern California. Furthermore, the incorporation of 

seasonality significantly improved the ability of a CLMM to explain variations blue whale body 

condition score for this dataset and the original dataset explored in Wachtendonk et al. (2022). 
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Although blue whales feed year-round, these findings add to the growing body of evidence that 

confirms the importance of summer feeding off the US West Coast, particularly in the California 

Current region, for the ENP blue whale population (Bailey et al., 2009; Calambokidis et al., 

2024; Oleson et al., 2007).                      

Further investigating the potential cause for inter-annual fluctuations in blue whale body 

condition, this measure appears to be closely linked to environmental conditions that influence 

aggregations of their krill prey. Within this study, the inclusion of either HCI or ONI into the 

most parsimonious base CLMM improved the model's ability to explain variations in body 

condition, in contrast to the final model explored in Wachtendonk et al. (2022) that included both 

PDO value and LUSI as covariates. Model predictions of krill CPUE have shown lower than 

average values during El Niño years compared to La Niña years (Cimino et al., 2020). 

Furthermore, shifts in humpback whale distribution and changes in associated prey species (krill 

and anchovy) have been documented to correspond with HCI (Santora et al., 2020). In 2015, the 

year in this investigation with highest proportion of blue whales in poor and moderately poor 

body condition, total krill abundance in the CCE declined from previously positive values in 

2008 – 2014 (Santora et al., 2020). In contrast to HCI, the decline in blue whale body condition 

occurred during an ONI spike in 2015. Nonetheless, a relatively high proportion of whales in 

poor and moderately poor was recorded during years with lower ONI values such as 2007 and 

2013.   

Overall, euphausiid aggregations differ from year to year (Fiechter et al., 2020) with 

significantly lower abundances in the CCE during the 1990s compared to the 2000s (Ralston et 

al., 2015). Despite relatively lower abundances of krill in the 1990s, shifts per-capita prey 

availability could correlate to changes in blue whale body condition given the likely increase in 
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the ENP blue whale population abundance since the 1990s. In fin whales off western Iceland, 

body condition was reported to increase with per capita prey availability (Williams et al., 2013). 

Nonetheless, concurrent fluctuations in krill and ENP blue whale abundance may not account for 

observed variations in body condition. Blue whales have been shown to exhibit behavioral 

plasticity in the face of environmental change. The earlier arrival of blue whales to the Gulf of 

the Farallones, by 100 days, in 2016 compared to 1993 was associated with warm, non-

productive years (Ingman et al., 2021). During a marine heatwave in New Zealand, blue whales 

exhibited reduced calls associated with foraging behavior (D calls) followed by lower song 

intensity associated with reproduction (Barlow et al., 2023). Within the scope of this analysis, 

environmental drivers appear to contribute to variability in blue whale body condition as 

reported by Wachtendonk et al. (2022).   

In an exploration of within-year blue whale survival, as it relates to yearly averaged body 

condition, there was no evidence suggesting a strong relationship between these two variables. 

Survival estimates were consistent with an estimate of ENP blue whale survival in the Gulf of 

California (GoC) that displayed changing patterns of habitat usage with shifts linked to 

environmental variation (Whittome et al., 2024). Although poor body condition has been 

correlated with reduced survival in killer whales (Stewart et al., 2021) and gray whales 

(Christiansen et al., 2021), currently the relationship between blue whale survival and body 

condition seems unclear. Nonetheless, individual declines in body condition could serve as a 

stressor with potential long-term impacts to the greater population (Cerini et al., 2023). Given the 

limited time scope of this project, future work could consider body condition of ENP blue whale 

individuals sighted within a year (rather than averaged across the sightings for a year) and 

whether a more fine-scale analysis could yield further insights into population-wide effects. 
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Additionally, this analysis was limited to the continuous body condition dataset (2005–2023) and 

thus excluded estimates from the 1990s and sightings without images suitable for body condition 

scoring. A wider time-scope, especially for a long-lived species such as the blue whale, may 

provide more accurate estimates of survival as it relates to long-term trends in individual body 

condition.  

As indicators of ecosystem health (Moore, 2008), changes in blue whale body condition 

could signal the detrimental effects of a warming climate to the highly productive CCE. 

Furthermore, decreased body condition can provide an additional stressor to marine mammals 

with the potential for population-wide impacts. Poor body condition of lactating female North 

Atlantic right whales (NARW) has been related to calf size, with an estimated reduction in calf 

length compared to southern right whales (SRW; Eubalaena australis; Christiansen et al., 2020). 

Female minke whales in poor body condition will provide proportionately less investment to a 

fetus compared to individuals in good body condition (Christiansen et al., 2014). Declines in 

ENP blue whale body condition have the potential to influence reproductive output and resulting 

population health. Along the U.S West Coast, blue whales remain vulnerable to anthropogenic 

impacts such as ship strike mortality (Rockwood et al., 2017) and mid-frequency active sonar 

(MFAS; Friedlaender et al., 2016) which impacts feeding behavior. These factors could 

compound in years with unfavorable environmental conditions that could impact blue whale 

body condition. Large whales in worse body condition may be less resilient to ecological change 

as has been described in Pacific Coast Feeding Group (PCFG) gray whales (Torres et al., 2022). 

Understanding the links between environmental variation, anthropogenic disturbance, abundance 

estimates, and body condition will be essential in continuing to monitor and manage the ENP 

blue whale population.   
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5.0 Conclusions 
  

This research displays the value of archival film and digital imagery and provides 

validation for the visual assessment of blue whale body condition from vessel-based photographs 

developed by Wachtendonk et al. (2022). Future work could consider the addition of aerial-based 

imagery as a validation method for subjective body condition. Blue whale body condition varied 

throughout the study period with a general decreasing trend since the 1990s and was linked to 

fluctuations in environmental drivers such as HCI and ONI. Body condition tended to improve 

throughout the period described in the literature as the feeding season (June – November) within 

the California Current region (Bailey et al., 2009; Calambokidis et al., 2024; Oleson et al., 2007). 

Although body condition was not found to correlate to within-year survival, there is potential for 

future analyses to expand the survival estimates from this study using individual scores of body 

condition to conduct a fine-scale assessment. Analyses of the relationship between blue whale 

reproductive output and body condition may provide a deeper understanding of potential future 

impacts to the population. Additionally, the sensitivity of blue whales in poor body condition to 

ecological and anthropogenic disturbance should be further explored. As a measure of health 

(Pettis et al., 2004), body condition estimates serve as a proxy for the health of the greater 

ecosystem (Moore, 2008). Therefore, these assessments are necessary to monitor not only the 

ENP blue whale population but the greater ocean ecosystem as a whole.  
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