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Abstract

Recent exploration into the interactions and relationship between hosts and their

microbiota has revealed a connection between many aspects of the host's biology,

health and associated micro‐organisms. Whereas amplicon sequencing has tradition-

ally been used to characterize the microbiome, the increasing number of published

population genomics data sets offers an underexploited opportunity to study micro-

bial profiles from the host shotgun sequencing data. Here, we use sequence data

originally generated from killer whale Orcinus orca skin biopsies for population geno-

mics, to characterize the skin microbiome and investigate how host social and geo-

graphical factors influence the microbial community composition. Having identified

845 microbial taxa from 2.4 million reads that did not map to the killer whale refer-

ence genome, we found that both ecotypic and geographical factors influence com-

munity composition of killer whale skin microbiomes. Furthermore, we uncovered
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key taxa that drive the microbiome community composition and showed that they

are embedded in unique networks, one of which is tentatively linked to diatom

presence and poor skin condition. Community composition differed between

Antarctic killer whales with and without diatom coverage, suggesting that the previ-

ously reported episodic migrations of Antarctic killer whales to warmer waters asso-

ciated with skin turnover may control the effects of potentially pathogenic bacteria

such as Tenacibaculum dicentrarchi. Our work demonstrates the feasibility of

microbiome studies from host shotgun sequencing data and highlights the

importance of metagenomics in understanding the relationship between host and

microbial ecology.
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1 | INTRODUCTION

The skin microbiome is an ecosystem comprised of trillions of

microbes sculpted by ecological and evolutionary forces acting on

both the microbes and their host (Byrd, Belkaid, & Segre, 2018;

McFall‐Ngai, Henderson, & Ruby, 2005). Recent explorations have

revealed a tight connection between many aspects of the host’s
biology and the associated microbial community (Reviewed by

Alberdi, Aizpurua, Bohmann, Zepeda‐Mendoza, & Gilbert, 2016; Bor-

denstein & Theis, 2015; Byrd et al., 2018; Koskella, Hall, & Metcalf,

2017; McFall‐Ngai et al., 2005). Although numerous intrinsic and

extrinsic factors that influence the skin microbiome composition

have been identified, the relative importance of these factors often

appears to differ even between closely related host taxa (Kueneman

et al., 2014; McKenzie, Bowers, Fierer, Knight, & Lauber, 2012; Wolz

et al., 2017). Intrinsically, the host's evolutionary history, age, sex

and health appear significant (Apprill et al., 2014; Chng et al., 2016;

Cho & Blaser, 2012; Leyden, McGiley, Mills, & Kligman, 1975;

McKenzie et al., 2012; Phillips et al., 2012; Ying et al., 2015). Extrin-

sically, both environmental factors, where a subselection of environ-

mental microbes colonizes host skin (Apprill et al., 2014; Walke

et al., 2014; Wolz et al., 2017; Ying et al., 2015), and socioecological

factors, such as a host's social group and the level of interaction with

conspecifics (Kolodny et al., 2017; Lax et al., 2014; Song et al.,

2013; Tung et al., 2015), can play important roles.

Most microbiome studies to date are based on 16S ribosomal

RNA gene sequences, a highly conserved region of the bacterial and

archaeal genome (Hamady & Knight, 2009). However, in addition to

potential biases in PCR amplification, in which low reliability of

quantitative estimations arises due to mismatches in primer binding

sites, PCR stochasticity and different numbers of 16S gene copies in

each bacterial species (Alberdi, Aizpurua, Gilbert, & Bohmann, 2017),

analysis of the 16S region can limit functional and taxonomic classifi-

cation (Quince, Walker, Simpson, Loman, & Segata, 2017). In con-

trast, shotgun metagenomics can facilitate both high‐resolution
taxonomic and functional analyses (Koskella et al., 2017; Quince et

al., 2017; Ranjan, Rani, Metwally, McGee, & Perkins, 2016). The

advent of affordable high‐throughput sequencing has seen an ever‐
increasing number of population genomics studies in a wide range of

study systems (e.g., Der Sarkissian et al., 2015; Jones et al., 2012;

Nater et al., 2017; Poelstra et al., 2014). This affords an unprece-

dented opportunity to exploit sequencing data to secondarily investi-

gate the microbial communities associated with the sampled tissue

of their host (Ames et al., 2015; Lassalle et al., 2018; Mangul et al.,

2016; Salzberg et al., 2005; Zhang et al., 2015).

Here, we explore the relative importance of extrinsic factors on

the epidermal skin microbiome of free‐ranging killer whales (Orcinus

orca) using shotgun sequencing data derived from skin biopsy samples

of five ecologically specialized populations or ecotypes (Foote et al.,

2016). Given the widespread geographical range (Forney & Wade,

2006) and variation in ecological specialization of killer whales, even

in sympatry (Durban, Fearnbach, Burrows, Ylitalo, & Pitman, 2017;

Ford et al., 1998), this species provides a good study system for

exploring the effects of both geographical location and ecotype (a

proxy for both sociality and phylogenetic history) on the skin micro-

biome. However, the opportunistic use of such data is also fraught

with potential pitfalls. We therefore describe in detail, measures taken

to disentangle potential sources of contamination from the true skin

microbiome, thus providing a useful roadmap for future host micro-

biome studies that exploit host‐derived shotgun sequencing data.

2 | MATERIALS AND METHODS

2.1 | Study system

Throughout the coastal waters of the North Pacific, two ecotypes of

killer whales are found in sympatry: the mammal‐eating “transient”
and fish‐eating “resident” ecotypes (Filatova et al., 2015; Ford et al.,

1998; Matkin, Barrett‐Lennard, Yurk, Ellifrit, & Trites, 2007; Saulitis,

Matkin, Barrett‐Lennard, Heise, & Ellis, 2000). Four decades of field

studies have found that they are socially and genetically isolated

(Barrett‐Lennard, 2000; Filatova et al., 2015; Foote & Morin, 2016;
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Ford, 2009; Hoelzel & Dover, 1991; Hoelzel et al., 2007; Morin et

al., 2010; Parsons et al., 2013). Killer whales have also diversified

into several ecotypes in the waters around the Antarctic continent,

including a form commonly observed hunting seals in the pack‐ice of

the Antarctic peninsula (type B1), a form that feeds on penguins in

the coastal waters of the Antarctic peninsula (type B2) and a dwarf

form thought to primarily feed on fish in the dense pack‐ice of the

Ross Sea (type C) (Durban et al., 2017; Pitman & Durban, 2010,

2012; Pitman & Ensor, 2003; Pitman, Fearnbach, & Durban, 2018).

2.2 | Sample collection and data generation

We used the unmapped reads from a published population genomics

study of killer whale ecotypes (European Nucleotide Archive,

www.ebi.ac.uk/ena, Accession nos.: ERS554424–ERS554471; Foote
et al., 2016), which produced low coverage genomes from a total of

49 wild killer whales, corresponding to five ecotypes: 10 samples

each of the North Pacific fish‐eating resident and sympatric mammal‐
eating transient ecotypes and 8, 11 and 10 samples, respectively,

from Antarctic types B1, B2 and C (see Figure 1 for the sampling

locations). DNA was extracted from epidermal biopsies collected by

firing a lightweight dart with a sterilized stainless steel cutting tip

from a sterilized projector (e.g., Barrett‐Lennard, Smith, & Ellis, 1996;

Palsbøll, Larsen, & Hansen, 1991) at the flank of the killer whale. As a

study on captive killer whales found low variability in the taxonomic

composition of the skin microbiome from different body sites (Chiar-

ello, Villéger, Bouvier, Auguet, & Bouvier, 2017), small variation in the

exact location on the flank from which the biopsy was taken should

not bias our results. Biopsies were stored in sterile tubes at −20°C.

At no point were biopsy samples in direct contact with human skin.

DNA extraction, library building and sequencing have been previ-

ously described (Foote et al., 2016). All laboratory work was con-

ducted in a sterile flow hood to prevent contamination. Sequencing

was performed at the Danish National High‐Throughput DNA

Sequencing Centre within the University of Copenhagen. The facility

is specifically geared for low‐quantity DNA library sequencing from

ancient and environmental DNA. Samples of the same ecotype were

pooled and sequenced across multiple sequencing lanes. Samples of

different ecotypes were always run on different sequencing lanes,

with the exception of several type B1 and B2 samples, which were

initially grouped as “type B” (Pitman & Ensor, 2003), and some sam-

ples were therefore sequenced on shared lanes.

2.3 | Sequencing read preprocessing

As a means to enrich the data set for bacterial sequences, we first

used SAMTOOLS v1.5 (Li et al., 2009) to remove all sequencing reads

that mapped to the killer whale reference nuclear genome (Oorca1.1,

GenBank: ANOL00000000.2; Foote et al., 2015) and mitochondrial

genome (GU187176.1) with BWA‐mem (Li & Durbin, 2009). The

remaining reads were adapter‐trimmed using ADAPTERREMOVAL V2.1.7

(Schubert, Lindgreen, & Orlando, 2016). We then removed duplicates

generated during library indexing PCR by merging reads with identi-

cal sequences using in‐house PYTHON scripts (Dryad https://doi.org/

10.5061/dryad.c8v3rv6). All reads with an average quality score <30

were filtered out using PRINSEQ v0.20.4 (Schmieder & Edwards, 2011),

and all reads of <35 bp were removed using ADAPTERREMOVAL.

2.4 | Investigating contamination

Despite the precautions outlined above, contamination can be intro-

duced at several stages of the sequence data generation and subse-

quently mistaken for the genuine host‐associated microbiome signal.

Contaminating DNA can be present in laboratory reagents and

extraction kits (Lusk, 2014; Salter et al., 2014). For example, silica in

some commercial DNA spin columns is derived from diatom cells

and therefore can be a potential source of contamination with dia-

tom DNA (Naccache et al., 2013). However, the Qiagen QIAquick

spin columns used in this study do not contain silica from biological

material, according to the manufacturer. Cross‐contamination can

also occur between samples processed in the same sequencing cen-

tre (Ballenghien, Faivre, & Galtier, 2017). The impact of contamina-

tion increases in samples with small amounts of true exogenous

DNA and can swamp the signal from the host's microbiome (Lusk,

2014; Salter et al., 2014). Contamination can be assessed using neg-

ative controls (e.g., Davis, Proctor, Holmes, Relman, & Callahan,
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F IGURE 1 Map of sampling locations
of the 49 samples of five killer whale
ecotypes, from which skin microbiomes
were included in this study. The Antarctic
ecotypes primarily inhabit waters 8–16°C
colder than the North Pacific ecotypes
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2017). However, the data used in this study were initially produced

with the sole focus on the host organism. Including extraction and

library preparation blanks is not a routine procedure in population

genomics studies based on high‐quality host tissue samples, and as

such, blanks were not included in the laboratory workflow and hence

not sequenced. Therefore, we instead implement an ad hoc work-

flow that attempts to differentiate between contaminant and real

exogenous DNA from host species shotgun sequencing data.

2.4.1 | PhiX contamination

The contamination of microbial reference genomes by PhiX, which is

used as a control in Illumina sequencing, is a known potential source

of error in metagenomics studies using shotgun sequencing data

(Mukherjee, Huntemann, Ivanova, Kyrpides, & Pati, 2015). Therefore,

to avoid erroneous mapping of PhiX‐derived reads to contaminated

genomes, we removed all reads mapping to the PhiX genome used

by Illumina (NC_001422) with BWA‐mem 0.7.15 (Li, 2013) with

default parameters.

2.4.2 | Environmental and laboratory contamination

If the amount of contamination (derived from laboratory reagents or

environment) is relatively equal among samples, we expect the rela-

tive proportion of contaminant sequencing reads to be inversely cor-

related with the quantity of sample‐derived DNA; that is, low‐
quantity DNA samples will be disproportionately affected by con-

taminant DNA sequences compared with high‐quantity samples

(Lusk, 2014; Salter et al., 2014). We therefore estimated the correla-

tion between the proportion of the total sequencing reads assigned

to each microbial taxon (see below for how taxonomic assignment

was conducted) and total DNA read count per sample (prior to

removal of host DNA and before PCR duplicate removal). Microbial

taxa for which the read count was significantly negatively correlated

with the total number of reads per sample (including host DNA), that

is those that consistently increased in abundance in low‐quantity
DNA samples, were flagged as potential contaminants.

2.4.3 | Human contamination

To account for the possibility of contamination with human‐asso-
ciated micro‐organisms, we next quantified the amounts of human

DNA in our samples and used this as a proxy of human‐derived
microbial contamination (see Supplementary Text, Supporting Infor-

mation for the details of read processing). Only reads uniquely map-

ping to a single region of the genome with high quality (SAMTOOLS ‐q
30 ‐F 4 ‐F 256) were retained, and we removed all duplicates using

SAMTOOLS rmdup in a single‐end mode. Human contamination levels

were estimated by calculating the percentage of filtered reads

mapped to the human genome (Supporting Information Table S1).

We included these values as a covariate in statistical models as a

way to, at least partially, control for contamination with human‐asso-
ciated micro‐organisms.

2.4.4 | Known bacterial contaminants

Next, we investigated whether specific bacterial taxa that have pre-

viously been reported to be likely contaminants are present in our

data set. Following read‐based analyses, we found that our samples

were dominated by Cutibacterium (Propionibacterium) acnes, which is

abundant on human skin (Byrd et al., 2018) and a known contami-

nant of high‐throughput sequencing data (Lusk, 2014; Mollerup et

al., 2016). We therefore investigated the distribution of sequence

identity between our C. acnes reads and the C. acnes reference gen-

omes, with the expectation that human or laboratory contaminants

would show high (close to 100) percentage identity, whereas killer

whale‐derived C. acnes would be more divergent.

Additionally, we analysed data from a North Pacific killer whale

sequenced at ~20× coverage in a published study, in which sample

collection, DNA extraction and sequencing were entirely independent

of our data production (Accession no: SRP035610; Moura et al.,

2014). If C. acnes was present in these data, it would suggest that

either it was a real component of the killer whale skin microbiome, or

it was independently introduced as contamination in both studies.

Contaminant taxa are unlikely to be introduced in isolation.

Cutibacterium acnes was confirmed to be a likely contaminant (see

below), and we therefore removed all taxa with which it significantly

co‐occurred. Using NETASSOC 0.6.3 (Morueta‐Holme et al., 2016), we

calculated co‐occurrence scores between all taxon pairs in the raw

taxa data set. We set the number of null replicates to 999 and cor-

rected p‐values for multiple comparisons using the FDR method.

From the resulting matrix, we selected taxa with the top 10% abso-

lute significant co‐occurrence score with candidate contaminant taxa

and removed these taxa from downstream analyses, along with

C. acnes.

2.4.5 | Investigating sources of contamination

Finally, to ascertain the authenticity of our data and to estimate the

level and possible source of contamination, we used SOURCETRACKER

v2.0.1 (Knights et al., 2011), a tool that implements a Bayesian clas-

sification model to predict the proportion of taxa derived from dif-

ferent potential source environments. This approach allowed us to

compare the composition of the free‐ranging killer whale skin micro-

biome to other marine mammal skin microbiota and to a number of

potential contaminating and environmental sources. We obtained

data from public repositories and included microbial communities

reflecting the marine environment (ocean water from Southern

Ocean and the North Pacific, Sunagawa et al., 2015), other marine

mammal skin (captive bottlenose dolphins Tursiops truncatus and

killer whales along with the respective pool water samples and free‐
ranging humpback whales, Bierlich et al., 2018; Chiarello et al.,

2017), likely contaminants such as human skin and gut (Lloyd‐Price
et al., 2017; Meisel et al., 2016; Oh et al., 2014) and laboratory con-

tamination from commonly used reagents (sterile water, Salter et al.,

2014) (Supporting Information Table S2). We attempted to specifi-

cally select sources that were obtained with the shotgun sequencing
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approach to avoid potential locus‐specific effects that can produce

distinct microbiome profiles in amplicon‐based studies. However,

only 16S rRNA amplicon data were available for the marine mammal

skin and the laboratory contaminants, each study targeting a differ-

ent region within this locus (Supporting Information Table S2).

Therefore, to control for locus‐specific effects, we also included sam-

ples from a human skin 16S amplicon study (Meisel et al., 2016) and

limited our data to reads mapping to the 16S rRNA gene for those

comparisons (see Supporting Information for more detailed

methodology of read processing).

We used the R package Vegan v2.4.6 (Oksanen, Guillaume

Blanchet, Kindt, & Legendre, 2017) to calculate distances between

microbiome profiles derived from these different data sets. After

total sum scaling (TSS) normalization, abundance‐based Bray–Curtis
and presence/absence‐based binary Jaccard distances were calcu-

lated and visualized using principal coordinate analysis. Subsequently,

a subset of sources was used in SOURCETRACKER and we used our killer

whale data as sinks without applying rarefaction to either sink or

source samples. We also repeated the SOURCETRACKER analysis using

free‐ranging humpback whales as the sink samples.

2.5 | Taxonomic assignment

We used MALT (MEGAN Alignment Tool) version 0.3.8 (Herbig et al.,

2016) to create a reference database of bacterial genomes down-

loaded from the NCBI FTP server (ftp://ftp.ncbi.nlm.nih.gov/genomes/

all/GCA, accessed 26 January 2017). We performed a semiglobal

nucleotide–nucleotide alignment against the reference database.

Semiglobal alignments are more suitable for assessing quality and

authenticity criteria common to short‐read data and are also useful

when aligning 16S rRNA data against a reference database such as

SILVA (Herbig et al., 2016). Sequence identity threshold was set to

95% as per Vågene et al. (2018), but with a more conservative

threshold of including only taxa with five or more aligned reads in

subsequent analysis.

The nucleotide alignments produced in MALT were further anal-

ysed in MEGAN version 6.7.6 (Huson et al., 2016). Genomes with the

presence of stacked reads in some genomic regions and/or large gaps

without any mapped reads were flagged using a custom PYTHON

script (Dryad https://doi.org/10.5061/dryad.c8v3rv6) and manually

assessed in MEGAN. This step was necessary to identify spurious and

incorrectly supported bacterial taxa, which were removed from fur-

ther analysis if they represented highly abundant species (Warinner

et al., 2017). Taxonomic composition of the samples was interac-

tively explored in MEGAN, and the number of reads assigned to each

taxon was exported for subsequent analysis.

Taxonomic assignment was also carried out using an assembly‐
based approach. Filtered metagenomic sequences of all samples

were merged to perform a co‐assembly using MEGAHIT 1.1.1 (Li, Liu,

Luo, Sadakane, & Lam, 2015) with default settings and k‐list:
21,29,39,59,79. Assembly quality was assessed using QUAST 4.5

(Gurevich, Saveliev, Vyahhi, & Tesler, 2013). Contigs were subse-

quently mapped to reference bacterial genomes with MGMAPPER

(Petersen et al., 2017) using best mode to assign taxonomy. The

assembly file was indexed using BWA‐index and SAMTOOLS‐faidx.
BWA‐mem was subsequently used to map the reads of each sample

back to the assembly contigs to finally retrieve the mapped reads

using SAMTOOLS‐view. Individual coverage values were calculated with

BEDTOOLS 2.26.0 (Quinlan & Hall, 2010) and contig coverage table

normalized using cumulative sum scale (CSS) as implemented in

MetagenomeSeq (Paulson, Stine, Bravo, & Pop, 2013).

The sequencing data used in this study are rather shallow in

terms of coverage of microbial taxa, corresponding to low coverage

killer whale genomes (mean of 2×). Therefore, we explored how low

sequencing depth may affect the inferred bacterial profiles. To this

end, we used an independently sequenced 20× coverage resident

killer whale genome (Moura et al., 2014). By drawing a random sub-

set of reads from this genome using SAMTOOLS, we compared the tax-

onomic composition of the microbiome of the same individual at

20x, 10x, 5× and 2× mean sequence coverage depth.

2.6 | Diversity analyses

We calculated all diversity measures in Vegan (Oksanen et al., 2017),

using reads that were assigned to the species level in MEGAN. By

focusing on taxa at the species level, we were able to explore the

skin microbiome at a high resolution, an advantage of shotgun over

amplicon‐based analyses. However, results of this analysis should be

interpreted in the light of a species‐level focus, where we are explor-

ing a small yet well‐resolved representation of the microbiome,

which may potentially be enriched with pathogens and common

environmental bacteria, rather than a holistic representation of the

entire ecosystem.

To control for bias introduced by varying genome size (species

with larger genomes show higher read counts, which are translated

into higher abundance scores; Warinner et al., 2017), we divided all

read counts by the size of the respective full bacterial genome. If

the taxon was mapped to the level of the strain, we divided the read

count by the published genome size of that strain; if identified to

the species level, we divided the read count by the average genome

size across all published strains of that species.

Beta diversity was explored using two dissimilarity matrices in

Vegan: abundance‐based Bray–Curtis and presence/absence‐based
binary Jaccard distances. To assess the strength and significance of

ecotype and geographical location (longitude and latitude) in describ-

ing variation in community composition, we conducted permutational

multivariate analysis using the function ADONIS in Vegan. We con-

trolled for differing depths of coverage between samples using two

techniques. First, we used genome size‐controlled data (see above)

and included the number of reads mapping to the species level as a

covariate. Second, TSS normalization of the genome size‐controlled
data was conducted, followed by conversion to the Bray–Curtis dis-

tance matrix. TSS normalization is irrelevant for the presence/ab-

sence data, as only species presence, rather than species abundance,

is retained in the binary presence/absence matrix. As a result, three

models were explored: two Bray–Curtis models with differing depth
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control techniques and one Jaccard model using read counts as

covariate. Each model consisted of the following covariates: latitude

(numeric), longitude (numeric), ecotype (categorical) and percentage

human contamination (numeric), with library size included only when

TSS normalization was not used. For each model, residuals were per-

muted 9999 times. We used the function BETADISPER (Vegan), fol-

lowed by analysis of variance (ANOVA) to test for homogeneity of

group dispersions. BETADISPER can be used to ensure that (a) the ADO-

NIS model results are not confounded by heterogeneous variances

(Anderson, 2001) and (b) to make biological inferences about

between‐group variance in community composition.

We used the function CAPSCALE from the Vegan package to per-

form principal coordinate analysis (PCoA). The four bacterial taxa

that described the most variation on PCoA1 and the four that

described the most variation on PCoA2 were designated as “driving
taxa.” We therefore classified a total of eight unique driving taxa

that describe individual differences in microbiome composition (Sup-

porting Information Table S4).

2.7 | Network analysis

To venture beyond single microbial taxa and explore microbial inter-

actions that include interspecific dynamics, we expanded our analy-

ses to networks of bacterial communities associated with the driving

taxa identified through the PCoA. Using NETASSOC (Morueta‐Holme et

al., 2016), we compared the observed partial correlation coefficients

between taxa with a null distribution estimated from identical spe-

cies richness and abundances as the observed data. Again, taxa co‐
occurrence scores were calculated between all taxon pairs in the

raw data set, with null replicates set to 999. The FDR method was

used to correct p‐values for multiple comparisons. From the resulting

matrix of significant co‐occurrence scores, we selected the 20 taxa

with the highest absolute co‐occurrence score for each of the eight

unique driving taxa. We created a new matrix including only these

taxa and visualized co‐occurrence networks.

2.8 | Functional profiling

Community composition can be a poor predictor of the functional

traits of the microbiome, due to processes such as horizontal gene

transfer (HGT) between bacterial taxa, which can decouple species

composition and function (Koskella et al., 2017). Shifting focus from

the taxonomic composition to the genic composition of the micro-

biome reduces the impact of HGT on functional characterization

(Koskella et al., 2017).

To explore functional profiles of the samples, we used DIAMOND

v0.9.10 with default parameters (Buchfink, Xie, & Huson, 2015) to

create a reference database of nonredundant protein sequences

from fully sequenced bacterial genomes downloaded from the NBCI

FTP server (https://ftp.ncbi.nlm.nih.gov/genomes/genbank/ accessed

9 March 2017). Nucleotide‐to‐amino acid alignments of the sample

reads to the reference database were performed in DIAMOND and the

top 10% of alignments per query reported. The MEGAN tool daa‐

meganizer was then used to assign reads to proteins based on the DI-

AMOND alignments and to assign functional roles to these proteins

using the SEED (Overbeek et al., 2005) and EGGNOG (Huerta‐Cepas et

al., 2017) databases. Since one protein can have more than one

function, it is possible for one read to be assigned to multiple func-

tional subsystems. The raw count data (number of reads assigned to

functional subsystem) were exported from MEGAN and further pro-

cessed in R. To control for differences in library depth, read counts

per functional group were normalized by total read numbers map-

ping to SEED or EGGNOG terms. We used principal component analysis

(PCA) performed in the R package PRCOMP to visualize differences in

functional groups between individuals.

We additionally performed an assembly‐based functional profiling

to overcome the individual weaknesses of both assembly‐ and read‐
based methodologies (Quince et al., 2017). Ab initio gene prediction

was performed over the metagenomic assembly using PRODIGAL 2.6.3

(Hyatt et al., 2010). The list of predicted gene sequences was

indexed using BWA, and SAMTOOLS was used to map the reads of

each sample back to the gene sequences. We used BEDTOOLS 2.26.0

(Quinlan & Hall, 2010) to calculate individual coverages. Gene cover-

age table was subsequently CSS normalized using METAGENOMESEQ

(Paulson et al., 2013).

2.9 | Diatom association analyses

Antarctic killer whales are often observed to have a yellow hue,

which has been attributed to diatom coverage (Berzin & Vladimirov,

1983; Pitman & Ensor, 2003), and identifiable individuals have been

observed to transit from this yellow skin coloration to a “clean” skin

condition (Durban & Pitman, 2012). This change is hypothesized to

occur during brief migrations to subtropical latitudes, where turnover

of the outer skin layer takes place with a reduced thermal cost

(Durban & Pitman, 2012). If this hypothesis is correct, diatom abun-

dance should be correlated with skin age and coloration (Durban &

Pitman, 2012; Hart, 1935; Konishi et al., 2008). Interindividual varia-

tion in microbiome profiles within the Antarctic ecotypes could

therefore reflect variation in the age of the outer skin layer. During

network analysis, we identified a possible association between key

bacterial taxa driving between‐sample differences in community

composition (Tenacibaculum dicentrarchi) and bacterial taxa associ-

ated with diatoms. Following from our observations that three sam-

ples from Antarctic ecotypes had high abundances of T. dicentrarchi

and that in the PCoA these samples were differentiated from most

other samples, we investigated the link between observed diatom

coverage, abundance of T. dicentrarchi and abundance of other

algae‐associated bacterial taxa. We conducted qualitative colour

grading of type B1 and type B2 individuals using photographs taken

at the time of biopsy collection, ranging from “clean” through to

“prominent” yellow coloration.

We used two methodologies to quantify the level of diatom

DNA in our samples. First, we used MALT and MEGAN in the same tax-

onomic pipeline as previously described, but with a reference data-

base comprised of NCBI RefSeq nucleotide sequences from the
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diatom phylum Bacillariophyta (downloaded 30 October 2017). To

date, only seven diatom reference genomes are available; thus, iden-

tification at the species level was not attempted. Instead, numbers

of reads mapping to Bacillariophyta were exported and further pro-

cessed in R. Raw diatom read counts were converted to the propor-

tion of the total number of sequencing reads per sample. Second,

we aligned all reads against the SILVA RRNA database (release 128,

Quast et al., 2013) using BWA‐mem 0.7.17, retained reads mapping

with >10 mapping quality with SAMTOOLS and used uclust (Edgar,

2010) in QIIME 1.9.1 (Caporaso et al., 2010) to assign taxonomy based

on the SILVA 18S database at 97% similarity. From the resulting OTU

table, we retained reads that matched to known diatom taxonomy.

We explored the correlation between latitude (by grouping North

Pacific and Antarctic ecotypes) and proportion of reads per sample

mapping to diatoms using a generalized linear model with a quasi‐
Poisson error structure and log link. As covariates, we included the

longitude, number of reads mapping to the bacterial species level to

control for library size and number of human reads to control for

human‐associated microbial contamination. Using the same model

structure, we then tested the correlation between the proportion of

reads per sample mapping to diatoms and the presence/abundance

of T. dicentrarchi reads, as well as the correlation with the presence

of known algae‐associated bacterial taxa (including T. dicentrarchi,

Cellulophaga baltica, Formosa sp. Hel1_33_131, Winogradskyella sp.,

Marinovum algicola, Agarivorans gilvus, Pseudoalteromonas atlantica

and Shewanella baltica: Bowman, 2000; Amin, Parker, & Armbrust,

2012; Goecke, Labes, Wiese, & Imhoff, 2013; Goecke, Thiel, Wiese,

Labes, & Imhoff, 2013, incorporated as a binary variable).

3 | RESULTS

Metagenomic profiles from the skin microbiome of 49 killer whales

from five ecotypes (Figure 1) were successfully reconstructed using

shotgun sequencing data from DNA extracted from skin biopsies. Of

the reads retained following our stringent filtering procedure, but

before our investigations into Cutibacterium acnes as a possible con-

taminant, 8.20% (n = 7,984,195) were assigned to microbial taxa

using the read‐based approach, with 2.45% (n = 2,384,587) assigned

at the species level (see Dryad repository https://doi.org/10.5061/

dryad.c8v3rv6). Overall, 845 taxa of microbes were identified. The

co‐assembly yielded a 33.01‐Mbp‐long metagenome comprised of

45,934 contigs (N50 = 970 bp, average = 730 bp, max = 48,182 bp).

Taxonomy was assigned to 41.73% of the contigs. Results from the

assembly‐based approach were concordant with the read‐based
results, and we therefore report only the latter.

3.1 | Investigating contamination

On average, 0.16% of reads (range 0.01%–5.43%) mapped to the

human genome (Supporting Information Table S2), suggesting the

presence of human contamination and making it possible that

human‐derived bacteria were present in our data set. After

correcting for multiple testing, we found no significant negative cor-

relation between the proportion of reads assigned to each bacterial

taxon and the total number of sequenced reads (Supporting Informa-

tion Figure S1). Negative trends (although not significant) between

some bacterial taxa and the total number of sequenced reads were

largely driven by one outlier sample with the lowest coverage

(B1_124047). Following the deduplication step of our processing

pipeline, these taxa were no longer present in the data set, as they

fell below our defined threshold of five aligned reads in MALT (Sup-

porting Information Figure S2).

Cutibacterium acnes was identified as the most abundant bacte-

rial taxon, with an average abundance of 39.57% (SD = 24.65; Sup-

porting Information Figure S3), but it may have been introduced via

human or laboratory contamination (Lusk, 2014). Percentage identity

to the human‐derived C. acnes genome was 100% for 245 and over

97% for 505 of the 527 contigs identified as C. acnes by MGMapper

(Supporting Information Figure S4), supporting the idea of a likely

exogenous source of C. acnes. Killer whale samples pooled by eco-

type were sequenced across multiple sequencing lanes, allowing us

to investigate whether contamination with C. acnes was introduced

at the sequencing step. Relative C. acnes abundance per sample was

highly similar between sequencing lanes (coefficient of varia-

tion = 0.076; Supporting Information Figure S5), suggesting that the

contamination occurred prior to sequencing. However, C. acnes was

also present to a high abundance (18.06% of reads aligning at spe-

cies level) in the independently sequenced resident killer whale

(Moura et al., 2014), suggesting that contamination with C. acnes

was not specific to our workflow. We concluded that there was a

high probability that C acnes was a laboratory contaminant and

therefore removed all C. acnes reads/contigs from our data set

before continuing with analysis.

3.1.1 | Network analysis results for
C. acnes‐associated taxa

Following its identification as a likely contaminant, we used network

analysis to identify and remove the top 10% of species which

significantly co‐occurred with C. acnes, which corresponded to co‐
occurrence scores above the absolute value of 1,000 (Supporting

Information Figure S6). Overall, 82 species were removed (Dryad

https://doi.org/10.5061/dryad.c8v3rv6), many of which are known

human‐associated bacterial taxa. Following this filtering step, one

type C sample had no remaining taxa. We therefore excluded this

sample from further analyses.

3.1.2 | Metagenomic affinities of wild killer whale
skin microbiome

Only 10 killer whale samples had 50 or more 16S reads with

assigned SILVA taxonomy (eight killer whale samples remained after

filtering for C. acnes-associated taxa, Figure 2). Overall, prior to

C. acnes filtering, the killer whale data set had 273 taxa in common

with the data set of 2,279 bacterial taxa derived from sources (e.g.,
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human, marine mammal and environmental samples, see Sec-

tion 2.4.5). After filtering for C. acnes and associated taxa, 236 of

the 273 killer whale‐associated taxa remained. Free‐ranging killer

whale and humpback whale skin microbiomes overlapped on the

principal coordinates, independent of the applied distance measure

and the presence of C. acnes‐associated bacteria (Figure 2a, Support-

ing Information Figure S7a,b). In contrast, data from the captive

study, including killer whale and captive dolphin skin samples and

their pool water, clustered separately from all other studies. General

separation by sequencing approach (i.e., shotgun versus amplicon)

was not observed: for instance, amplicon‐ and shotgun‐sequenced
human samples grouped together (Figure 2a,b). It is therefore possi-

ble that the separation of the captive study samples is due to either

the use of a specific 16S target locus or other factors associated

with captive versus wild environments (note that the pool was filled

with sea water from the Mediterranean Sea; Chiarello et al., 2017).

The three marine mammal species formed one cluster irrespective

of the study on the third dimension in the abundance‐based Bray–
Curtis distance analysis (Supporting Information Figure S7c,d), sug-

gesting that there is a common factor to the marine mammal skin

microbiome composition. Importantly, the free‐ranging killer whale

microbiome profiles generally grouped away from the human skin

samples, gut samples and laboratory contaminants. They were also

separated from the ocean water samples, suggesting that the killer

whale skin microbiomes characterized in our study represent a micro-

bial community that is clearly distinct from surrounding ocean water.

Here, it is noteworthy that filtering of our data for C. acnes‐asso-
ciated taxa at the genus level is highly conservative and also removes

a number of microbial taxa that are abundant in the marine environ-

ment, as they belong to the same genera as some C. acnes‐asso-
ciated species. Samples representing laboratory contamination

consistently clustered with the human skin samples (Figure 2a,b,

(a) (b)

(d)(c)

F IGURE 2 Composition of the wild killer whale skin microbiomes and other published microbiomes, for samples with ≥50 taxonomy
assigned 16S reads. Principal coordinate analysis of Jaccard binary presence/absence distances before (a) and after (b) filtering of C. acnes‐
associated taxa from the wild killer whale data. Proportions of sources contributing to each killer whale sample, represented by columns, from
SourceTracker analysis before (c) and after (d) filtering of C. acnes-associated taxa. * in (c) denotes samples that were excluded after C. acnes
filtering due to low read numbers
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Supporting Information Figure S7), suggesting that one source of con-

taminants in laboratory work are human‐associated skin microbes. All

results presented above were confirmed with a larger data set that

included 16 killer whale samples with at least 20 bacterial 16S reads

with SILVA taxonomy assignment (Supporting Information Figure S8).

Based on the principal coordinate analysis and for greater clarity

of presentation, we restricted the selection of samples that were

used as sources in the SourceTracker analysis to captive dolphin skin

(n = 4), captive killer whale skin (n = 4), water from the captive killer

whale pool (n = 4), wild humpback whale skin (n = 4), Southern

Ocean water (n = 4), human gut (n = 4), shotgun‐derived human skin

data from a sebaceous site (n = 4) and laboratory contamination

(n = 3; the fourth sample had <20 16S reads and was excluded from

the analysis) (Supporting Information Table S2). The SourceTracker

results supported those of the principal coordinate analysis

(Figure 2c,d), with human skin taxa contributing on average only

3.4% to the wild killer whale skin microbiome (range 0.0%–18.4%).

This percentage decreased to 2.2% (range 0.0%–9.6%) after filtering

out C. acnes‐associated taxa. The contribution of laboratory contami-

nants was also low (average 4.2%, range 0.0–28.6) in all but one resi-

dent killer whale individual (31868), which was removed after

C. acnes filtering due to low (<50) read numbers (average 1.7%,

range 0.0%–7.1% after removal of C. acnes‐associated taxa). The

sources contributing the most to the free‐ranging killer whale skin

microbiomes after removing C. acnes‐associated taxa included South-

ern Ocean (mean 32.3%, range 4.5%–69.4%), humpback whale skin

(11.9%, range 0%–36.7% in), captive killer whale skin and captive

dolphin skin (mean 13.2%, range 2.1%–64.8% and mean 12.5%,

range 0.2%–40.8%, respectively). A high proportion of taxa observed

in free‐ranging killer whales could not be assigned to any of the

sources included in the analysis (“Unknown,” mean >25%). These

taxa may represent uncharacterized diversity specific to the wild

killer whale skin microbiome, a source that was not included in our

analysis, for example ocean water collected at the same time as the

killer whale skin biopsies or marine mammal skin taxa that are poorly

characterized by the 16S locus targeted in other marine mammal

microbiome studies.

To verify the SourceTracker results for free‐ranging killer whale

samples studied here, we also ran SourceTracker using the four wild

humpback whales as the sink samples while assigning free‐ranging
killer whales as a source (Supporting Information Figure S9). Two

humpback whales sampled early in the foraging season around the

Antarctic Peninsula closely resembled the wild killer whale profiles,

containing a mixture of taxa attributed to the wild killer whale skin

(41.7% and 65.3%), the captive dolphin skin (31.1% and 2.7%) and

unknown sources (21.3% and 24.5%). In contrast, the microbiome of

the two humpback whales sampled late in the Antarctic foraging

season was dominated by Southern Ocean taxa (both >95%). This is

consistent with the temporal variation in the complete humpback

whale data set reported by Bierlich et al., (2018). Overall, the

detailed analyses of contributing sources of the killer whale skin

microbiome revealed a large proportion of taxa that are also found

on the skin of other marine mammals and an important contribution

of environmental ocean water taxa. This is in line with previous

reports that found a significant contribution of sea water to, yet dis-

tinct composition of, marine mammal microbiomes (Bik et al., 2016).

Expected contaminating sources, such as human skin and laboratory

contaminants, contributed only a small proportion to our killer whale

skin microbiome data obtained from host shotgun sequencing.

3.2 | Taxonomic exploration

Read‐based and assembly‐based approaches produced concordant

taxonomic profiles. The most abundant constituents of the killer

whale skin microbiome at the phylum level were Proteobacteria,

Actinobacteria, Bacteroidetes and Firmicutes (Supporting Information

Figure S3a), which have been identified in previous studies of baleen

whale skin microbiota (Apprill et al., 2014; Shotts, Albert, Wooley, &

Brown, 1990), including through 16S amplification of skin swabs

from captive killer whales under controlled conditions (Chiarello et

al., 2017). At the species level, we found a high level of interindivid-

ual variation (Figure 3a, Supporting Information Figure S3b), as previ-

ously found for four captive killer whales housed in the same facility

(Chiarello et al., 2017).

Subsetting an independently sequenced resident killer whale

genome to lower sequencing depth, we inferred that while five

most common taxa were found in similar proportions in high and

low coverage data, the identification of rarer taxa became more

stochastic at lower sequencing depths (Supporting Information

Table S3). Our results may therefore suffer from this bias associ-

ated with low coverage data, which would be most prominent in

the presence/absence‐based analyses. As a means to control for

this bias, we include library size as a covariate in models investigat-

ing beta diversity.

3.3 | Diversity analyses

Human contamination was not a significant driver in the models

exploring beta diversity (Table 1), explaining at most 2% of the varia-

tion in taxonomic composition in each model. Ecotype was a signifi-

cant variable in all models, explaining 10%–11% of variation in the

data (Table 1). Latitude was significant in both Bray–Curtis models

but not in the Jaccard presence–absence model. Where significant, it

explained 4%–5% of variation in the data (Table 1). Longitude was

not significant in any of the models. Betadisper analysis revealed no

significant heterogeneity in the variation of community composition

between ecotypes (non‐TSS normalized Bray–Curtis: d.f. = 4,

F = 0.52, p = 0.72; TSS normalized Bray–Curtis: d.f. = 4, F = 1.74,

p = 0.16; binary Jaccard: d.f. = 4, F = 0.63, p = 0.64). This suggests

that between‐individual variation in microbial composition is similar

among ecotypes.

The Bray–Curtis PCoA explained more variation than Jaccard

(24.13% vs. 16.06% on the first two axes), and we therefore focus

on the Bray–Curtis results. A network based on significant co‐occur-
rences between eight bacterial taxa driving variation at the individual

level (Supporting Information Table S4) and the top 20 co‐occurring
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taxa for each of the driving taxa showed clearly differentiated and

distinct community groups (Figure 3). Further investigation found

that three of the taxa showing the highest co‐occurrence scores with

the driving taxon T. dicentrarchi (Formosa sp. Hel1_33_131, Cellu-

lophaga algicola and Algibacter alginolytica) are associated with algae

(Becker, Scheffel, Polz, & Hehemann, 2017; Bowman, 2000; Sun et

al., 2016).

3.4 | Tenacibaculum dicentrarchi and diatoms

Both approaches to diatom identification produced concordant

results (Supporting Information Figure S10, Table S5). Antarctic eco-

types had a significantly higher abundance of diatom DNA than

North Pacific ecotypes (β = 0.65, SE = 0.29, p = 0.03; Figure 4a).

Individuals with “prominent” yellow coloration showed higher diatom

abundance (Figure 4b), supporting the link between skin colour and

diatom presence in Antarctic killer whales. Furthermore, the abun-

dance of diatom DNA per sample was significantly positively corre-

lated with the abundance and presence of T. dicentrarchi reads

(number of T. dicentrarchi reads: β = 0.014, SE = 0.003, p = <0.001;

presence of T. dicentrarchi: β = 0.915, SE = 0.207, p < 0.001;

Figure 4c) and the presence of at least one algae‐associated bacterial

taxon (β = 0.98, SE = 0.17, p = <0.001; Figure 4d).

3.5 | Functional analysis

In the read‐based functional analysis, a total of 3,611,441 reads

mapped to eggNOG functions and 1,440,371 reads mapped to SEED

Resident Transient Type CType B2Type B1

–

–

(a) (b)

(c)

F IGURE 3 (a) Proportion of driving bacteria per individual, after data filtering. Individuals, represented by columns, are grouped by ecotype,
and the relative proportions of bacterial taxa are indicated by column shading (1, Tenacibaculum dicentrarchi; 2, Paraburkholderia fungorum; 3,
Pseudoalteromonas haloplanktis; 4, Pseudoalteromonas translucida; 5, Acinetobacter johnsonii; 6, Pseudomonas stutzeri; 7, Stenotrophomonas
maltophilia; 8, Kocuria palustris; and 9, other). (b) Beta diversity between ecotypes illustrated as a Bray–Curtis PCoA estimated from read
counts. (c) Positive co‐occurrence network built from a co‐occurrence matrix of all species, subsetted to the eight driving taxa (black nodes
numbered as above) and their top 20 positive and significant co‐occurring species. Only species with a significant co‐occurrence score of >800
are shown
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functions. In the contig‐based functional analysis, we identified

56,042 potential genes in our metagenome, out of which EGGNOG

function was assigned to 35,182. Both approaches identified energy

production and conversion (class C) and amino acid metabolism and

transport (class E) as the most abundant EGGNOG functions in our data

set. The EGGNOG PCA revealed high variability between individuals

(Figure 4e); however, a cluster of Antarctic whales was observed in

principal component 2. These samples had high abundances of T. di-

centrarchi (Figure 4e) and were associated with functions corre-

sponding to the COG functional categories J (translation, ribosomal

structure and biogenesis, β = 0.007, SE = 0.002, p = <0.001), F (nu-

cleotide transport and metabolism, β = 0.005, SE = 0.002, p = 0.004)

and I (lipid transport and metabolism, β = 0.004, SE = 0.002,

p = 0.03). The same cluster of high abundance T. dicentrarchi Antarc-

tic samples was also identified in the SEED PCA (Supporting Infor-

mation Figure S11). These samples had increased numbers of reads

mapping to DNA metabolism, amino acids and derivatives and cofac-

tors/vitamins, although none of these functions was significantly

correlated with T. dicentrarchi abundance.

4 | DISCUSSION

Our study highlights that communities of exogenous or host‐asso-
ciated microbiota can be genetically characterized from shotgun

sequencing of DNA extracted from the host tissue. However, dedi-

cated analysis and treatment of contamination are necessary and

require careful consideration in studies such as this, whereby sam-

ples were not collected nor sequenced with the intention of geneti-

cally identifying microbiota. In such cases, the normal stringent

control measures which are routine in microbial studies, such as the

sequencing of blanks, may not be possible. We have therefore pre-

sented an array of approaches for estimating the proportion and

sources of contamination and accounting for it in shotgun studies.

Overall, our analyses suggest that with careful consideration, the

mining of microbial DNA from host shotgun sequencing data can

provide useful biological insights that inform future targeted

investigations into microbiome composition and function under strin-

gent laboratory conditions.

After carefully filtering our data, we were able to identify species

interactions, ecological networks and community assembly of the

microbes and diatoms that colonize killer whale skin by utilizing

unmapped reads from shotgun sequencing data generated from skin

biopsies. A key advantage of this approach over amplicon‐based
sequencing is the ability to assess functional variation based on gene

content and to identify taxa to species level (Koskella et al., 2017;

Quince et al., 2017). However, despite ongoing efforts to describe

bacterial species diversity, the breadth of the reference database is a

limiting factor in the unbiased characterization of bacterial composi-

tion. Thus, taxa identified in our analyses are necessarily limited to

species with available genomic information and in some cases are

likely to represent their close phylogenetic relatives (Tessler et al.,

2017). Hence, we refer to “taxa” rather than “species” where appro-

priate. We also demonstrate the impact of contamination on the low

numbers of reads from true host‐associated microbes, which can

dilute the signal of biologically meaningful variation among samples.

Social and geographical factors have been found to influence

microbial diversity in terrestrial and semiterrestrial animals (Koskella

et al., 2017). However, there is less understanding of how these fac-

tors interplay in a wide‐ranging social marine mammalian system

(Nelson, Apprill, Mann, Rogers, & Brown, 2015). We found that beta

diversity of the killer whale skin microbiome was significantly influ-

enced by ecotype and latitude. Temperature has been shown to be a

key determinant of marine microbial community structure at a global

scale (Salazar & Sunagawa, 2017; Sunagawa et al., 2015). However,

the effect of ecotype as the most important tested variable high-

lights the significance of social and phylogenetic factors in shaping

microbiome richness and composition. In addition, it underscores

that although killer whale skin is influenced by the local environment

(Romano‐Bertrand, Licznar‐Fajardo, Parer, & Jumas‐Bilak, 2015), it

represents a unique ecosystem that is separate from that of the sur-

rounding habitat. Concordant with our results, a study of the micro-

biome of four captive killer whales and the sea water from their

pool found that the skin microbiota were more diverse and

(a) Bray–Curtis
(b) Bray–Curtis
(TSS normalized) (c) Binary Jaccard

F r2 p F r2 p F r2 p

Latitude 1.8 0.04 0.01 2.35 0.05 <0.01 1.4 0.03 0.05

Longitude 0.89 0.02 0.62 0.89 0.02 0.61 0.99 0.02 0.45

Ecotype 1.36 0.11 <0.01 1.35 0.11 0.02 1.23 0.10 0.03

Library size 1.33 0.03 <0.01 – – – 1.20 0.02 0.23

Human

contamination

1.13 0.02 0.35 0.59 0.01 0.89 1.04 0.02 0.42

Residuals 0.79 0.81 0.80

Total 1 1 1

Note. Results of Adonis models using genome size‐controlled species data. (a) Bray–Curtis model

with library size included as a covariate; (b) TSS normalized Bray–Curtis model; and (c) binary Jaccard

model with library size included as a covariate. Significant factors are highlighted in bold.

TABLE 1 Factors influencing the killer
whale skin microbiome
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phylogenetically distinct from the sea water microbial community

(Chiarello et al., 2017). Killer whales are highly social mammals

(Baird, 2000; Ford, 2009), and thus, they are likely to have a high

potential for horizontal transfer of microbes between individuals dur-

ing contact (Nelson et al., 2015). Ecotype‐specific social behaviour,

organization and population structure, as well as other variables

related to ecotype ecology, such as range size and diet (due to trans-

mission of bacteria from different prey species; Wasimuddin et al.,

2017), are all likely to affect the diversity of microbial species that

individuals are exposed to and also influence the level of horizontal

transfer of microbes between whales. The strong social philopatry in

killer whales (Baird, 2000; Ford, 2009) and the phylogenetic and

phylogeographical history of ecotypes is also likely to play a role,

whereby due to limited social transmission between ecotypes, the

phylogeny of bacterial species is likely to reflect that of the host

(Ley, Lozupone, Hamady, Knight, & Gordon, 2008; but see Roth-

schild et al., 2018). It is also likely to be influenced by the host's evo-

lutionary history, including secondary contact between ecotypes

(Foote & Morin, 2016), where both vertical and horizontal transmis-

sions of microbes between ecotypes are possible.

Despite the significance of “ecotype” as a driver of skin micro-

biome diversity in killer whales, at least 79% of the variation in the

microbiome is unexplained by the factors considered in our models

(Table 1). There is a strong overlap between ecotypes in the PCoA

(Figure 3b), suggesting a shared core microbiome which may be par-

tially shared with other cetacean species (Figure 2). Additionally, the

PCoA shows substantial variation within ecotypes (Figure 3b), fur-

ther highlighting the role of some other driver(s) of microbiome vari-

ation. Among Antarctic ecotypes, individual variation was associated

with diatom presence and a discrete subnetwork of microbial taxa.

The occurrence of a “yellow slime” attributed to diatoms on the skin

of whales, including killer whales, was recorded as early as a century

ago (Bennett, 1920; Pitman et al., 2018). The extent of diatom adhe-

sion on Antarctic whales is thought to correlate with latitude and

the time the whale has spent in cold waters (Hart, 1935; Konishi et

al., 2008). The skin microbiome of humpback whales has been

reported to change through the Antarctic foraging season (Bierlich et

al., 2018), and our SourceTracker analysis found that humpback

whales sampled during the late foraging season (i.e., individuals who

had presumably spent longer in the Southern Ocean waters at the

time of sampling) had more similarity to Southern Ocean microbial

communities than those collected during the early foraging season.

This raises the intriguing question as to whether the time spent in

the frigid Antarctic waters could be a driver of variation in the skin

microbiome and diatom load of Antarctic killer whales.

Satellite tracking of Antarctic killer whale movements docu-

mented rapid return migrations to subtropical latitudes, in which

individuals travelled up to 9,400 km in 42 days (Durban & Pitman,

2012, 2013). Based on the strong directionality and velocity of travel

during these migrations, Durban and Pitman (2012) hypothesized

that they were not associated with breeding or feeding behaviour.

Instead, they argued that these migrations could be driven by the

need to leave the frigid Antarctic waters and temporarily move to

warmer waters, to allow for physiological maintenance including the

regeneration of the outer skin layer (Durban & Pitman, 2012). The

identification of the same individuals in Antarctic waters, sometimes

with a thick accumulation of diatoms, and at other times appearing

“clean,” supports the hypothesis that skin regeneration is an inter-

mittent rather than continuous process (Durban & Pitman, 2012).

We present genetic support for the hypothesis of Durban and

Pitman (2012) that “clean” and yellow‐tinted type B1 and B2 killer

whales represent differences in diatom load. In addition, we pro-

vide the first evidence that the extent of diatom coverage is also

associated with significant variation in the skin microbiome commu-

nity. We found that Antarctic killer whales with the highest diatom

abundance also had skin microbiomes most similar to Southern

Ocean microbial communities, suggesting that at the time of sam-

pling, these individuals had spent longer in the Antarctic waters,

consistent with the hypothesis that diatom coverage accumulates

with time spent in the cold Southern Ocean waters. Perhaps most

significantly, diatom abundance was positively correlated with the

abundance of T. dicentrarchi, a known pathogen in several fish spe-

cies, which is associated with skin lesions and severe tail and fin rot

(Avendaño‐Herrera et al., 2016; Habib et al., 2014; Piñeiro‐Vidal,
Gijón, Zarza, & Santos, 2012).

Our analyses revealed that samples with high abundances of

T. dicentrarchi show distinct functional profiles. Functional analyses

remain exploratory at this stage, constrained by the difficulty of

F IGURE 4 The influence of diatom abundance on skin microbiome community composition and microbial functional profiles. (a) Relative
diatom abundance is significantly higher in Antarctic killer whales than North Pacific whales, but this is largely driven by a subset of outlier
Antarctic individuals. (b) Within Antarctic type B1 and type B2 specimens, the relative diatom abundance is significantly associated with skin
coloration of the host killer whale, with the yellowish hue being a reliable indicator of diatom load. Inset images are of the same type B2 killer
whale individual displaying extreme variability in diatom coverage, both photographs by John Durban. Relative diatom abundance is
significantly associated with (c) the presence of Tenacibaculum dicentrarchi and (d) several algae‐associated bacteria, including T. dicentrarchi. (e)
PCA of variation in functional COGs between individuals, coloured by T. dicentrarchi abundance. Individuals with high relative abundances of T.
dicentrarchi generally cluster with high values in principal component 2. The top 10 COGs contributing to PCA variation are shown in grey
arrows (J: translation, ribosomal structure and biogenesis, I: lipid transport and metabolism, F: nucleotide transport and metabolism, H:
coenzyme transport and metabolism, U: intracellular trafficking, secretion and vesicular transport, N: cell motility, P: inorganic ion transport and
metabolism, T: signal transduction mechanisms, M: cell wall membrane envelope biogenesis, G: carbohydrate transport and metabolism). (f)
Photograph of a type B1 killer whale in the Gerlache Strait of the Antarctic Peninsula on the 4 December 2015 with high diatom coverage and
poor skin condition. Photograph by Conor Ryan
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translating broad functional categories into biological meaning. How-

ever, with more data that link individual health status and micro-

biome composition, functional analyses may provide a tool for

identifying individuals at risk. Therefore, whether T. dicentrarchi rep-

resents a pathogen to killer whale hosts remains unknown. Type B1

killer whales in apparently poor health and with heavy diatom loads

have been observed with severe skin conditions (skin peeling and

lesions; Figure 4f); however, Tenacibaculum sp. have been reported

in up to 95% of humpback whales sampled in recent studies, which

included apparently healthy individuals (Apprill, Mooney, Lyman,

Stimpert, & Rappé, 2011, Apprill et al., 2014; Bierlich et al., 2018).

Skin maintenance may thus represent a balancing act for Antarctic

killer whales of managing the costs of pathogen load, thermal regula-

tion, reduced foraging time and long‐range movement. Research into

the skin microbiome should therefore continue to form a component

of the ongoing holistic and multidisciplinary research programme to

investigate the health of Antarctic killer whale populations and more

broadly in studies on the health of marine mammals (e.g., Apprill et

al., 2014; Raverty et al., 2017).

Ongoing field efforts provide the opportunity to further explore

the relationships and interactions between killer whale hosts, their

skin microbiome, other exogenous symbionts such as diatoms and

the environment. Our community‐based analyses suggest the pres-

ence of a distinct environmental taxa network centred on P. halo-

planktis as a driving taxon (Figure 3c). Collection and metagenomic

characterization of environmental samples, such as sea water, along-

side host biological samples would allow further explorations into

the contribution of local ecological factors to the host microbiome.

As a means of reducing the impact of contamination with DNA from

laboratory environment, microbiome characterization can be con-

ducted by means of RNA sequencing. This has an additional advan-

tage of generating metatranscriptomic data, which, in combination

with the metagenomic data, can facilitate the comparison/contrast

between community function (using RNA transcript) and community

taxonomic composition (using DNA sequence; Koskella et al., 2017).

This may further reduce the potential impact of common laboratory

contaminants, allowing the exploration of the bacterial functional

repertoire that is in use in a given ecological context, including

reconstruction of metabolic pathways (Bashiardes, Zilberman‐Scha-
pira, & Elinav, 2016). Contamination in the laboratory could be fur-

ther controlled for and characterized through inclusion of extraction,

library preparation and PCR blanks as negative controls (Lusk, 2014;

Salter et al., 2014) and measures such as double indexing (Kircher,

Sawyer, & Meyer, 2011; Rohland & Reich, 2012; van der Valk, Vezzi,

Ormestad, Dalén, & Guschanski, 2018), which can then inform the

emerging downstream filtering methods for separating true micro-

biomes from contamination (Delmont & Eren, 2016; Davis et al.,

2017). Lastly, the advances in long‐read sequencing using portable

nanopore‐based platforms make it possible to generate data suitable

for reconstructing complete bacterial genomes while in the field

(Parker, Helmstetter, Devey, Wilkinson, & Papadopulos, 2017),

including in the Antarctic (Johnson, Zaikova, Goerlitz, Bai, & Tighe,

2017). This is a promising development with respect to improving

the breadth of host taxa from which bacterial taxa are derived and

should improve future mapping of metagenomics data and taxo-

nomic assignment.
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