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Marine predators face the challenge of reliably finding prey that is patchily
distributed in space and time. Predators make movement decisions at multiple
spatial and temporal scales, yet we have a limited understanding of how habi-
tat selection at multiple scales translates into foraging performance. In the
ocean, there is mounting evidence that submesoscale (i.e. less than 100 km)
processes drive the formation of dense prey patches that should hypothetically
provide feeding hot spots and increase predator foraging success. Here, we
integrated environmental remote-sensing with high-resolution animal-borne
biologging data to evaluate submesoscale surface current features in relation
to the habitat selection and foraging performance of blue whales in the Califor-
nia Current System. Our study revealed a consistent functional relationship in
which blue whales disproportionately foraged within dynamic aggregative
submesoscale features at both the regional and feeding site scales across
seasons, regions and years. Moreover, we found that blue whale feeding
rates increased in areas with stronger aggregative features, suggesting that
these features indicate areas of higher prey density. The use of fine-scale,
dynamic features by foraging blue whales underscores the need to take
these features into account when designating critical habitat and may help
inform strategies to mitigate the impacts of human activities for the species.

1. Background

How and where consumers obtain resources has fundamental consequences for
individual fitness, species distributions and community dynamics and remains
a central question in ecology. Organisms make decisions at multiple hierarchi-
cally organized spatial and temporal scales [1-3]; thus inquiry at nested scales is
required to fully understand organism-environment interactions. These scales
include geographical range selection (first-order selection), home range selec-
tion for the area where most time is spent (second-order selection), habitat
selection within a home range or highest use habitat (third-order selection)
and feeding site selection where behavioural modes shift (fourth-order selec-
tion) [4]. While research in both terrestrial and marine systems has addressed
habitat selection at a range of scales, we have a limited understanding of
how habitat selection at these scales translates into foraging performance.

In the ocean, biophysical interactions generate heterogeneously distributed
resources, also described as patchiness [5-7]. This patchiness influences pri-
mary producers’ (e.g. phytoplankton) ability to flourish, which affects prey
availability and distribution for higher trophic levels, from secondary consu-
mers to top predators [8]. The ephemerality of prey patches in space and
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time creates a challenge for pelagic predators, who must find
and detect where and when these patches occur. Their ability
to do so reliably ultimately translates into fitness and survival
[9,10]. There is growing evidence that submesoscale (less than
100 km) physical processes are a missing link in our under-
standing of the structuring of pelagic ecosystems, especially
in the context of predator—prey interactions [11-13]. For
example, a multi-scale study of aggregative oceanic processes
found that the majority of ecosystem interactions between
seabirds and their prey occurred within ephemeral hotspots
at scales less than 10 km [14]. However, our understanding
of these interactions is limited by our ability to contempora-
neously measure ocean dynamics and predator foraging
performance at comparable scales [15,16].

Blue whales (Balaenoptera musculus) are an ideal study
species to investigate how animals find and exploit ephemeral,
patchy prey across multiple scales in the ocean. Blue whales’
large body size allows researchers to use animal-borne biolog-
ging devices [17,18] equipped with sensors that detect the
kinematic signatures of their stereotypical feeding style (i.e.
lunge feeding, [19,20]) and their location when they surface
to breathe [21]. As bulk filter feeding krill specialists, blue
whales rely on patchy and often ephemeral aggregations of
krill (family: Euphausiacea) [22-25], resulting in a simplified
trophic system useful in the investigation of predator behav-
iour in a natural context [15,26]. In the Eastern North Pacific,
blue whales typically migrate into the California Current
System (CCS) from May to November, where high-efficiency
foraging on dense krill patches builds lipid stores that fuel
long-distance migrations to breeding locations at lower lati-
tudes [27,28]. At the seasonal scale, the arrival and duration
of blue whales on foraging grounds (i.e. the CCS) is somewhat
predictable; however, what drives movement and foraging be-
haviour within this habitat at finer scales (e.g. hours to weeks)
remains less understood [29-31], largely due to a gap in
environmental observations at these scales.

Remote-sensing of ocean dynamics informs our under-
standing of the relationship between pelagic predator habitat
selection and surface current features (e.g. upwelling-driven
eddies, jets and fronts) in pinnipeds [3,32], sharks [33,34], tur-
tles [35], seabirds [36,37] and cetaceans [38,39]. These surface
current features reflect oceanographic processes that propagate
through the water column to depths that can reach the ocean
bottom [40,41] and influence prey aggregation through phys-
ical forcing [13,42]. Multi-year studies of krill in the CCS
show variability in the phenology and intensity of krill hot-
spots, with physical forcing being a key determinant of krill
distribution in the environment [43,44]. Krill also aggregate
in response to environmental processes at the scale of hours
to days [45], indicating that fine- and intermediate-scale pro-
cesses may be ecologically relevant to blue whales. Although
previous studies have used remotely sensed aggregative sur-
face current features to predict habitat use of deep-diving
balaenopterid whales in Southern California [39], Central
California [46] and the Mediterranean [38], high-resolution
foraging performance data over ecologically relevant time-
scales are needed to determine the physical processes that
influence prey and thus predator movements.

Identifying ecologically important dynamic habitat fea-
tures requires high-resolution contemporaneous measures of
predator foraging performance and the physical processes
that drive resource distribution and density [14,16,47], which
has been technically challenging to address [48]. Here, we

use an integrated biologging and remote-sensing approach to [ 2 |

investigate the drivers of blue whale foraging performance.
Although multiple ecological and physiological factors affect
foraging performance, feeding rate is a useful proxy for a diet
specialist with highly stereotyped foraging behaviour, such
as the blue whale [19,28]. Furthermore, blue whales modulate
feeding rates in association with prey density and distribution
[22,49]. First, we use high-resolution, intermediate-duration
(e.g. 2-30 days) multi-sensor tags [17,18] to measure blue
whale feeding rates and locations. Second, we use hourly
high-frequency (HF) radar surface current measurements to
calculate a time-dependent Lagrangian modelled proxy that
reflects coherent aggregative ocean transport features at sub-
mesoscales [50,51]. We hypothesize that blue whales will
co-locate with these aggregative surface current features and
that their feeding rates will increase in their presence. In this
study, we (i) examine whether blue whales disproportionately
select these features from available habitat and (ii) quantify the
influence these features have on blue whale feeding rates as a
metric of foraging performance.

2. Material and methods

(a) Blue whale movement and feeding data

Between 2016 and 2020, we deployed 23 high-resolution digital
tags on blue whales in the CCS. Of these, we used data from
10 individuals that met criteria for inclusion described below
(mean deployment duration 7.1+5.0 days; table 1). To assess
the relationship between blue whale feeding and submesoscale
environmental features, we selected deployments that sampled
high-resolution data for more than 24 h, collected GPS positions
that overlapped with the sampling footprint of the coastal
HF Radar network for over 66% of dives and engaged in feeding
behaviour. Several individuals initiated a southbound migra-
tion, exhibiting a gradual behavioural transition during the
deployment [31], and were excluded from this study.

Tag data used in this study (table 1) were TDR10F tags from
Wildlife Computers (n=7) and Acousonde acoustic tags from
Greeneridge Sciences (1 = 3) [18]. All tags sampled depth, accelero-
metry (greater than or equal to 32 Hz) and fast-acquisition GPS.
Tags were deployed from a 6-7 m rigid-hull inflatable boat using
a 5m carbon fibre pole. Tags were attached to the animal with
three or four stainless steel darts that were 65 mm long with 1-2
rows of petals [17] and were later recovered via ARGOS satellite
positions and VHF telemetry. Raw kinematic data were pre-pro-
cessed in MATLAB (MathWorks, Inc., v2017a) using tag analysis
tools described in [52] to calculate the animal’s pitch, roll and an
estimate of speed from the accelerometer sensor data [53]. Individ-
ual feeding events (i.e. lunges) were identified manually using
stereotypical signatures in kinematic data [19]. All processed
data were down-sampled to 1 Hz for analysis and subsequent pro-
cessing of the blue whale kinematic and geographical movement
data we conducted in R v. 4.0.0 [54].

The sampling unit for the analyses in this study was blue whale
dives, identified as excursions to a depth of greater than 10 m using
the tagtools package (http://www.animaltags.org). Post-dive sur-
face duration was calculated as the time between successive dives.
Raw GPS location data were filtered for unrealistic whale speeds
(e.g. greater than 6 m s™") using the ArgosFilter package, v. 0.62
[55]. We used linear interpolation (interpolateTime function
of the move package, v. 4.0.6 [56]) to estimate locations for dives
with short intervals between known GPS locations (i.e. a gap less
than 15 min). Only dives with a corresponding location at the
start of a dive were included in this analysis (7791 dives, table 1)
and we examined the resulting dataset for systematic bias due to
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Table 1. Summary of tag deployments used in this study. Dives with both an associated GPS location and FTLE data represent the sample sizes for each individual in this study. Overall mean daily feeding rate reflects the number of

lunges per 24 h period from midnight to midnight for complete days only. Dive-by-dive mean feeding rate excludes non-feeding dives. Kolmogorov—Smirov (K-S) test of whether the distribution of FTLE for blue whales lies below that

of background points. Deployment date (BmYYMMDD) and tag type (i.e. Wildlife Computers (TDR) and Acousonde (A)) are denoted in the deployment name.
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gaps in GPS coverage. Dives were classified as feeding if they con-
tained at least one identified lunge, and the feeding rate (lunges h™")
of each dive was calculated as follows:

no. lunges .1

feeding rate y; .1y = .
& T8%dive ) = Jive duration + post dive surface duration

This dive-by-dive feeding rate accounts for transit time to
and from the prey at depth, the biomechanics of feeding (i.e.
lunge and filter time), as well as the surface recovery period to
account for the physiological constraints of diving (figure 1),
and aligns with feeding rate calculations for blue whales in
other studies of dive-scale foraging behaviour [22,46,57]. The
foraging performance of a diving animal is optimized when
the energy gain (in this case, lunge count) is maximized relative
to the dive cycle duration, which includes both the time
underwater and the time at the surface following a dive [58-60].

(b) Environmental data
(i) High-frequency radar data

HF radar provides continuous, high-resolution measurements of
ocean circulation and structure at fine and intermediate scales in
coastal regions in near real time [61,62]. The technology uses ter-
restrial-based radar antennas to transmit electromagnetic signals
and measure the backscatter as the signals are reflected off the
ocean’s surface. When two or more radar antennas monitor
the same area, the total surface current vector (i.e. speed and
direction) can be resolved [63]. Surface current vectors derived
from HF radar have been validated by moored current meters
[64] and other methods. The U.S. Integrated Ocean Observing
System High Frequency Radar Network (IOOS HFRNet, [65])
maintains a network of HF radar monitoring stations along the
US West coast, providing surface current vectors at hourly,
6 km resolution. For each deployment, surface current data
were downloaded from IOOS HFRNet (http://cordc.ucsd.edu/
projects/hfrnet/) for the deployment period +7 days with a
bounding box of =1 degree around the extent of the locations
for each deployment. Data gaps in the raw HF radar surface cur-
rent measurements were restored using the algorithms described
in Ameli and Shadden [66], selecting a concave hull (alpha shape
radius of 10 km) with the detection and exclusion of land.

(ii) Lagrangian feature identification

Surface current vectors alone may not adequately identify
submesoscale features, such as fronts and eddies, due to the
time-dependent nature of processes in the marine environment
[67,68]. Instead, to characterize the strength and persistence of
these features, we use a Lagrangian (i.e. time dependent) approach
to identify spatially and temporally coherent transport structures
(i.e. Lagrangian coherent structures, LCS). Using a Lagrangian
analysis tool (Trajectory Reconstruction and Analysis for Coherent
Structure Evaluation, TRACE, http://transport.me.berkeley.edu/
trace/) that follows the methodology described in Shadden et al.
[69,70], we calculated the backward-in-time finite-time Lyapunov
exponent (hereafter FTLE, figure 2b,c), which is a scalar measure of
particle aggregation and an indicator of LCS [71]. TRACE calcu-
lates FTLE by seeding the empirical surface current data with
simulated tracer particles and integrating their movement trajec-
tories over a fixed time-period, with positive FTLE values
indicating locations where tracers aggregated at the end of the
simulation. Ridges of elevated FTLE values identify attracting
LCS [72], which represent barriers to transport that can propagate
through the water column, such as fronts and eddies [73], and have
biological significance to top predators [74,75]. FTLE derived from
HF radar data has been shown to correlate to the movements of
drifters in Monterey Bay, and the method is robust to noise and
periodic measurement inaccuracies [70].
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Figure 1. (a) A blue whale tagged in 2017 with a high-resolution, intermediate-duration multi-sensor tag (Wildlife Computers TRD10-F modified with a
dart attachment). (b) Dive profile for a portion of the deployment from the blue whale in (a) (Bm170622-TDR12), with lunges shown by red circles and feeding
states highlighted. (c.d) A non-feeding and feeding dive, respectively, with high-resolution data shown. Lunges (red) were identified by the stereotypical kinematic
signature (e.g. changes in pitch and roll as well as a precipitous drop in speed at the time of mouth-opening); (d) highlights the dive duration (blue) and post-dive

surface duration (magenta) used in the calculation of feeding rates.

Using TRACE, we derived hourly, 600 m resolution FTLE
fields from the restored hourly, 6 km resolution surface current
vector fields, integrated over the preceding 48 h. We seeded the
simulation with tracers at 10 x the spatial resolution of the surface
current vectors, i.e. 600 m (sensu [70]) and applied a free-slip
boundary condition to tracers near land [76], which allows the
tracers to slide along the land boundary. Tracer advection used a
bilinear spatial interpolation and an adaptive fourth-order
Runge-Kutta—Fehlberg integration method. We selected a 48 h
integration period to minimize the influence of tidal currents and
reduce the chance of simulated particles exiting the domain
within the integration period [73]; however, the location of LCS
is generally insensitive to variations in integration length [70].
Hourly FTLE fields were derived from the preceding 48 h inte-
gration period, i.e. backward-in-time FTLE. For each blue whale
dive, we extracted the FTLE value from the closest grid cell in
time and space using the raster package [77] in R. Therefore,
every dive is associated with a co-located FTLE value at 600 m
resolution within 30 min of the dive timestamp.

(c) Statistical analyses

The movements of free-ranging predators can be described in
terms of habitat utilization in which the predator chooses a
subset of the habitat available. The utilization is considered
selective when a predator targets a certain set of features

disproportionately to their availability in the environment [4].
The ability to identify individual blue whale feeding events
from tag data provides a valuable study system well suited for
evaluating higher order selection of habitat within their home
range (third order) and selection of foraging sites (fourth
order). We used a hierarchical approach in our analysis first to
determine blue whale habitat selection at the regional scale,
then assessed the modulation of feeding behaviour within this
habitat. All statistical analyses were conducted in R v. 3.5.1 [54].

(i) Regional (third order) habitat selection

To simulate a distribution of FTLE values that an individual could
have encountered in its surrounding environment (i.e. background
points), random locations were drawn from the regional spatial
domain for each individual (i.e. +1 degree bounding box around
the extent of the locations for each individual). Locations were gen-
erated ata 10: 1 ratio of background locations to real locations [78],
and we extracted the FTLE value of the background locations for
the time-periods of their corresponding animal locations. We cal-
culated an individually weighted mean to account for the
deployment of varying lengths from the distribution of FTLE
values for both real and background locations:

1
no. locationsindivigual X NO. deployments

Weight'ndividual =

1
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Figure 2. (a) Deployment tracks and hourly feeding summaries for 10 blue whales along the California coast, showing the HF radar coverage footprint and receiver
locations (200 m isobaths shown in grey). (b) Locations of simulated particle tracers for 28 September 2017 14.00 (local time) after a 48 h integration (particle
tracers initially seeded in an evenly spaced grid). (¢) FTLE was calculated from the particle trajectories in (b), with the track from a 4-day blue whale deployment
shown in green (grey 100 and 200 m isobaths). Black diamond represents the mean hourly location and number of lunges for the specific hour of FTLE data shown.

(Black dashed area in (a) represents the spatial extent of (b,c).)

To determine whether blue whales in our study selected
habitat within their regional spatial domain, we used non-para-
metric, two-sample Kolmogorov-Smirnov tests to determine
whether FTLE values for blue whale locations are significantly
greater than the surrounding area. These distribution tests illus-
trate habitat selection within the foraging grounds, which aligns
with the third-order process (i.e. selection of habitat areas within
the home or subpopulation range) from [4].

(ii) Feeding site (fourth order) selection

To explore blue whale feeding site selection, we used the pres-
ence or absence of feeding behaviour for each dive to examine
the probability of feeding across a range of FTLE values. We fit
a generalized linear mixed model (GLMM) via penalized
quasi-likelihood (glmmPQL function of the MASS package,
v. 7.3-53 [79]) with individuals included as a random effect to
account for individual variation. We incorporated a continu-
ous-time first-order autocorrelation structure (corCAR1, nmle
package v. 3.1-147 [80]) with time since the start of the deploy-
ment as a covariate to account for serial autocorrelation in the
tag data [81]. To facilitate hypothesis testing in assessing feeding
site selection, we generated null model datasets that control for
either spatial or temporal variation [82]. All null model analyses
followed the same procedures as the blue whale data to facilitate
comparison, using a GLMM with a continuous-time first-order
autocorrelation structure for each null model.

To determine whether blue whale feeding locations are sig-
nificantly different from those of non-selecting individuals
(random site selection model), we used the adehabitatLT package
(v. 0.4.19, [83]) to create 10 randomized, simulated tracks for

each individual. The simulated tracks were implemented as a
correlated random walk (CRW) [84] and were parameterized
by the scaling parameter (7) and concentration parameter of turn-
ing angles (r) for each individual, using random starting points
from within the minimum convex polygon of each deployment.
Time-matched FTLE values were extracted for each simulated
location. None of the simulations has points on land, and all
simulated tracks use the same timestamps and feeding and
non-feeding designation as their corresponding deployments to
control for the temporal autocorrelation of the data as well as
to better compare to the real whale data.

We also explored the temporal persistence of blue whale feed-
ing locations and FTLE using time-shifted tracks. We shifted the
timestamps of the movement data-stream for each individual
forward in time by 24, 48, 96 and 192 h and extracted the time-
matched FTLE value for each location to quantify the temporal
persistence. All locations are identical to the real whale data and
retain the same feeding designation. We hypothesized that if
FTLE features are location-specific and persistent for multiple
days, we would observe the same relationship across all
time-shifted models and the real data.

(iii) Feeding rate analysis

We applied a hidden Markov model (HMM) using data-derived
feeding states to estimate state probabilities in relation to FTLE
and to assess the influence of FTLE on blue whale feeding rates
[85]. These models take advantage of the inherent serial autocorre-
lation of animal tag data to determine the probability of switching
between discrete behavioural states. We normalized the feeding
rate by percentile rank (FRy) for each individual to account for
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Figure 3. FTLE values were significantly greater at blue whale locations (black; D = 0.0617, p < 0.000001) than the background distribution (grey). Lines represent
density distributions of FTLE for all animal locations (n = 7791, black), feeding locations only (n = 3875, red) and background samples (n =77 910, grey); all

distributions weighted by individual to account for varying deployment lengths.

inter-individual differences in feeding rates and used these to clas-
sify feeding rates into groups in a HMM. For this analysis, we split
the normalized feeding rates at the 25th and 75th percentiles
to create four states: non-feeding (FRyc¢ = 0%), light feeding (FR ..
<25%), moderate feeding (25% < FRy, < 75%) and heavy feeding
(FRpet > 75%). Using these four states as the a priori known states of
the model, we fit a HMM using the moveHMM package (v. 1.7,
[86]). We use a supervised learning approach [87] that summarizes
the effect of FTLE on modelled behavioural transition probabilities
to calculate the stationary probabilities of each state. These rep-
resent the estimated probability of being in each state as a
function of FTLE [86]. We also fit a two-state (feeding and non-
feeding) HMM to corroborate the GLMM results of the feeding
site selection model.

To account for differences in tag deployment lengths, we
used the weighted distribution of feeding rates for all animals
to estimate the overall feeding rate in relation to FTLE of an aver-
age blue whale in our study. Weights were assigned such that the
distribution of feeding rates for each of the 10 individuals
counted evenly (see electronic supplemental material):

1
no. feeding divesingiviqual X NO. deployments

weighty, giviqual =
We split the weighted distribution into four states using the
same percentiles as the FR; and calculated the mean feeding
rate for each state. Using the stationary state probabilities of the
HMM, we estimated the overall feeding rate across the range of
FTLE values i=-1.25 to 1.5 and made the same calculations
using the upper and lower confidence intervals of the model:

estimated feeding rategrig;)

4
= Z stationary probabilitystatemﬂ x feeding ratesite

state=1

3. Results

We examined the movement and foraging behaviour of 10 blue
whales along the California coast using high-resolution multi-
sensor tags, with deployments spanning Northern, Central
and Southern California over 5 years between the months of
May and November. Visual inspection of hourly plots of
FTLE and time-matched blue whale locations showed a quali-
tative association between blue whale movements and feeding
behaviour in relation to areas of elevated FILE
(electronic supplementary material animation). Through our
statistical analysis, we found significant associations between

FTLE features and regional habitat selection, feeding site
selection and feeding rates for blue whales based on the
more than 1700 h of tag and FTLE data. We examine each of
these associations below.

(a) Regional habitat selection

When comparing the overall distribution of FTLE for all animal
locations (individually weighted mean = 0.279) to that of the
background samples (individually weighted mean =0.221),
we found that blue whale locations were co-located with
significantly higher FTLE values (Kolmogorov-Smirnov test
D=0.0617, p<0.000001, figure 3). Additionally, we found
that when comparing each individual to background samples
drawn from the corresponding regional spatial domain and
time-period for each individual, FTLE values were signifi-
cantly higher at whale locations than the background
distributions for all 10 individuals (table 1).

(b) Feeding site selection

From our high-resolution tag data, we identified blue whale
feeding behaviour (i.e. a dive with one or more lunges) in
46 +14% of recorded dives. For blue whales in our study,
an extended sequence without a 10 m dive was rare (0.5%
of dives had a surface time greater than 60 min and 98% of
dives with surface times greater than 20 min were not feeding
dives) and greater than 95% of dive locations had a gap of
two or fewer dives between them for all individuals. We
used the presence or absence of feeding behaviour and
location for each dive to examine blue whale feeding site
selection and found that blue whales selected stronger
FTLE features during feeding than non-feeding dives and
more than would be expected from random feeding site
selection.

FTLE positively influenced the probability of feeding for
blue whales in our study (n=10 individuals, 7791 dives;
GLMM: slope 0.448, p=0.0025). We also used a GLMM to
test a hypothesis of no selection using CRW simulated tracks.
The random site selection model produced a weak negative
relationship between FTLE and the probability of feeding
(n=100 simulated tracks; GLMM: slope —0.066, p=0.156,
figure 4a). When we explored the temporal persistence of
FTLE features, we found that the relationship between blue
whale feeding site selection and FTLE did not persist for tem-
poral shifts greater than 24 h. The +24 h model was significant,
with a similar relationship to the real data (GLMM slope 0.49,
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Figure 4. (a) The probability of feeding increased with FTLE (black with CI shaded, n =10 individuals, 7791 dives, slope 0.45, p = 0.0025). The slope of the
relationship was significantly greater than the CRW null model (blue with (I shaded, n =100 simulated tracks, slope —0.066, p = 0.156). (b) The slope of
the feeding rate—FTLE relationship decreased when tracks were time-shifted, with a greater decrease for larger time shifts. Dashed lines in (b) represent
p-values greater than 0.05 (i.e. the predicted slope was not significantly different from 0).

p <0.003). Temporal shifts of 48 and 96 h showed no relation-
ship, while a shift of 192h had a significant negative
relationship (figure 4b; electronic supplementary material,
table S1).

(c) Influence on feeding rates

Feeding intensity increased with FTLE strength. The mean
dive-by-dive feeding rate (see methods) for all individuals
was 23.8 +7.4 lunges h™". When we calculated state probabil-
ities from the normalized feeding rates for the four-state
HMM (figure 51), we found a negative relationship between
FTLE and the non-feeding state, concordant with the relation-
ship found in both the two-state (feeding and non-feeding)
HMM and the feeding site selection analysis (electronic sup-
plementary material, figure S1). The stationary probabilities
of the three feeding states (light, moderate and heavy) all cov-
aried with FTLE such that feeding intensity increased with
FTLE strength (figure 5a). At low FTLE values, light and mod-
erate feeding were more probable than heavy. As FTLE values
increase, heavy and moderate feeding become more probable
while light feeding less so. The mean feeding rates for
the average blue whale’s feeding distribution for each state
(i.e. light, moderate and heavy feeding states) were 13.5, 23.9
and 34.1 lunges h™', respectively (electronic supplementary
material, figure S3). The overall feeding rate for an average
blue whale in our study increased with FTLE (figure 4b).
When modelling estimates at the 5th, 50th and 95th percentiles
of the weighted distribution of encountered FTLE for all indi-
viduals (table 2), we found an overall increase of 43% in
estimated feeding rate for an average blue whale in our study
between the 5th and 95th percentiles (+15% between the 5th
and 50th; +25% between the 50th and 95th).

4. Discussion

Our study reveals a consistent functional relationship between
aggregative surface current features, regional and site-specific
habitat selection, and feeding rates, in which blue whales
disproportionately select and forage within dynamic aggrega-
tive features measured at hourly intervals across seasons,
regions and years. As obligate krill feeders [23,25], blue
whales” behavioural responses to patchy environments

would predominantly be reflected in movement rather than
prey-switching. We coupled contemporaneous measurements
of blue whale movement and foraging behaviour with empiri-
cally derived submesoscale current features to evaluate blue
whale foraging performance at fine spatio-temporal scales.
These results build upon previous research (e.g. ([13,37-39])
that found aggregative surface features are important to ceta-
ceans and other top predators’ foraging behaviour and
support our hypothesis that submesoscale oceanic features
influence blue whale foraging performance. The ability to
detect individual feeding events is rare in biologging studies
[88], and to our knowledge, this is the first study to link subme-
soscale oceanic features to predator feeding rates. This key
development demonstrates that the association found in pre-
vious studies between energy gain and oceanic features at
mesoscale spatial scales [3] is likely driven by submesoscale
interactions.

Our study tracked 10 individuals in different seasons,
regions and years for up to 18 days (mean 7.14 +4.98). Though
our sample size of individuals was relatively small, the longevity
of the deployments combined with the high-resolution
behavioural and environmental data represents a substantial
advance in our understanding of habitat selection processes in
the dynamic marine environment. For this study system, coastal
HF radar provided higher spatio-temporal resolution envi-
ronmental data than satellites, without sacrificing synoptic
coverage. Further, by drawing on previous research on balaenop-
terid foraging kinematics [19,28], we were able to directly
observe feeding rates, rather than relying on more distal proxies
for foraging performance such as patch residence time.

Our models indicate that the relationship between blue
whale movement and surface current features deteriorates
after 24 h, suggesting these features are ephemeral at time-
scales relevant to foraging decisions. We used FTLE as a
proxy for these underlying oceanographic processes because
it captures the time-dependent nature of this dynamic
environment. If the aggregative surface current features
measured here were geographically static, we would expect
the observed relationship between foraging locations and
FTLE to persist through time. While some aggregative surface
current features may persist beyond the 24 h timescale,
more research is needed to understand their formation and
persistence in the environment.
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Table 2. Model estimates at the 5% 50" and 95™ percentiles of the
weighted distribution of encountered FTLE for all individuals. Estimated
feeding rate is for the average blue whale in our study.

percentile encountered
FTLE

estimate 5t 50" 95th

encountered FTLE (day™) —0.11 0.26 0.78
probability (not feeding) 05 051 042
0.12 0.12 0.12
probability (moderate feeding) 021 02 024
probability (heavy feeding) 0.11 0.15 0.23
estimated feeding rate (lnges h™") 1043 1198 1495

probailty (it fecing

The ecological links between surface dynamics and sub-
surface habitat remain difficult to study [89], and the depth
of influence of the surface features we describe is not

precisely known. However, surface current features have
been shown to reflect oceanographic processes that propagate
through the water column, potentially to depths of over a
kilometre [40], below the depth of blue whale foraging [90].
Prior work has shown associations between surface metrics
and sub-surface foraging behaviour of deep-diving species
such as fin whales [39], elephant seals [3] and both shallow
and deep-diving penguins [13]. While surface current fea-
tures and organisms such as krill may be disjointed during
the day, diel vertical migration may further increase the
importance of surface features when prey species forage
during the night.

The covariance between blue whale feeding rates and
FTLE strength (figure 4b) may indicate increased krill abun-
dance or density in submesoscale aggregative ocean
features. Prey patch density is particularly important to the
foraging efficiency and survival of blue whales due to the
high energetic cost of lunge feeding [28]. Previous research
found that blue whales in the CCS increase feeding rates
when encountering patches of higher prey density [49], and
foraging decisions may be more influenced by patch density
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than total patch biomass [22]. In the CCS, most krill aggrega-
tions are short-lived (e.g. 2-10 days) and large, persistent krill
aggregations are rare [44]. The short duration and fine-scale
heterogeneity of these dense patches underscores (i) the
importance of understanding intermediate and fine-scale bio-
physical relationships that drive these hotspots and (ii) the
need for contemporaneous measures of predator movements
at similar scales [42,91]. A recent study in Monterey Bay
found that krill aggregate in response to changing wind
regimes at scales similar to the measurements of this study
(i.e. hours to days), but the mechanism for this phenomenon
is not well understood [45]. Further research is needed to
better understand how FTLE features and oceanographic
conditions influence the distribution and density of krill in
the CCS.

Consumer fitness relies on optimizing energy intake for
allocation to survival, growth and reproduction [92,93].
Energy intake is modulated by several processes, primarily
feeding rate and prey choice. Feeding rates exhibit functional
responses to environmental heterogeneity, food density [94]
and biotic interactions [95]. The effects of prey density and
biotic interactions (e.g. interference competition and predator
vigilance) on feeding rates have been well-studied, but
environmental heterogeneity less so. In the terrestrial
environment, for example, granivorous birds’ feeding rates
were negatively correlated with substrate complexity; i.e.
higher in bare soil than crop stubble [96], whereas insectivor-
ous birds’ feeding rates remained constant across a range of
changing environmental conditions by switching from
aerial to ground foraging tactics in inclement weather [97].
However, the marine environment is more spatio-temporally
dynamic than most terrestrial ecosystems [98]. Fine-scale,
ephemeral features revealed by FTLE, such as fronts and
eddies, provide physical structure in a moving medium,
aggregating energy, nutrients and biomass into dynamic
patches. As a result, the spatio-temporal scales of marine pre-
dators’ movements and foraging decisions differ qualitatively
from their terrestrial counterparts [34,99]. The scales investi-
gated in this study are therefore necessary for quantifying
marine predators’ functional responses to environmental het-
erogeneity and developing a holistic understanding of how
consumers optimize energy intake.

This study leverages advances in biologging (i.e. high-res-
olution tags) and remote sensing (i.e. HF radar) to provide
insight at scales that were previously difficult to measure.
Although other remote-sensing platforms—such as unoccu-
pied aerial vehicles—can capture both behaviour and the
environment at fine-spatial scales [100], we show that the
combination of biologging and HF radar can provide a
broader scope of high-resolution behavioural detail and
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