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Abstract

Guadalupe fur seals (GFS), Arctocephalus philippii townsendi,

an U.S. Endangered Species Act threatened pinniped, have

recently reappeared in their historic range along the west-

ern seaboard of the continental United States. Starting

2005 through 2016, 169 GFSs stranded in Washington and

Oregon, involving two designated unusual mortality events.

The circumstances surrounding GFS strandings, mortality,

and their increased presence in Oregon and Washington

were analyzed during this study. Detailed necropsies, histo-

pathology (n = 93), and epidemiological analysis found three

main causes of death (COD): emaciation (44%), trauma

(29%), and infectious disease (19%) and the factors associ-

ated with overall strandings and emaciation. Trauma

included many cases found associated with fisheries inter-

actions and clustered near the mouth of the Columbia River,

where high levels of commercial fishing occur. The most

common pathogens found associated with disease were

Toxoplasma gondii, Sarcocystis neurona, and gastrointestinal

helminths. Seasonality and upwelling were associated with

higher stranding numbers regardless of COD. Seasonal

migration into the region, coinciding with postweaning, sug-

gests young GFSs are in search of prey and habitat
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resources. Reemergence of GFSs is likely due to conserva-

tion efforts, which have been critical for species recovery in

the region. Continued monitoring is needed as this vulnera-

ble species continues to rebound.
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1 | INTRODUCTION

Guadalupe fur seals (GFS), Arctocephalus philippii townsendi (Merriam, 1897), are an otariid species native to the East-

ern Pacific Ocean. These seals breed primarily in Mexico on the Isla Guadalupe and Isla Benito del Este; however,

other small rookery sites have been found scattered on islands as far north as San Miguel Island, California, where

small numbers of pups have been born annually since 1999 (Melin & Delong, 1999). Due to their preference for open

ocean prey such as squid species, GFSs spend significant foraging time well off the coast in pelagic environments

(Gallo-Reynoso & Esperón-Rodríguez, 2013). Historically, GFS, like other species of fur seals, were hunted for their

fur leading to their presumed extinction in the 1800s (Rick et al., 2009; Townsend, 1931). The first sighting, since

the presumed extinction status, was of two males at Isla Guadalupe in 1928 (Townsend, 1931; Wedgeforth, 1928).

None were reported again until 1949 when a single male was seen, and then in 1954 a small breeding group was

identified (Bartholomew, 1950; Hubbs, 1956; Rick et al., 2009).

Since then, the GFS population has increased by an estimated rate of 14% annually, with an estimated 20,000

animals in the population currently (Carretta et al., 2017). In 1986 the status of their population was officially classi-

fied as “threatened” under the Endangered Species Act, their population has also been protected under Mexican law,

which currently lists this species as “endangered” (Carretta et al., 2010; Gallo-Reynoso, 1994; Rick et al., 2009). Their

continued population growth is a promising trend for this marine predator and a testament to conservation efforts in

the United States under the Marine Mammal Protection Act and the Endangered Species Act, and Mexican law. The

recovery of this species is also characterized by its reappearance in their historic migration range, which appeared to

cover much of the west coast from Mexico, north to Vancouver, British Columbia, Canada (Etnier, 2002;

Gallo-Reynoso & Esperón-Rodríguez, 2013; Villegas-Zurita, Castillejos-Moguel, & Elorriaga-Verplancken, 2015).

Movements north in Mexico and California have been associated with prey movements related to El Niño events,

however, their movement further north into Oregon and Washington has not been explored as fully (Elorriaga-Ver-

plancken, Sierra-Rodriguez, Rosales-Nanduca, Acevedo-Whitehouse, & Sandoval-Sierra, 2016).

The extent of the historic GFS northern range was discovered through archeological research on GFS remains

aged at between 1500 and 1700 A.D. in Northern Washington state; however, there were no live animals observed

in the region until recently, and no census or haul-out data currently exists for this northern most region (Etnier,

2002). Since 2005, GFSs have consistently stranded and been sighted in small numbers on the coasts of Washington

and Oregon (Lambourn et al., 2012). Data collected from strandings have informed the context of this reemerging

species distribution in the Pacific Northwest (PNW) of the United States. Two unusual mortality events (UMEs) in

the United States have been declared in the last decade by the Working Group on Marine Mammal Unusual Mortal-

ity Events (WGUMME), which is concerning for this vulnerable species (Lambourn et al., 2012). Their reemergence in

the PNW may be a promising sign of recovery, but environmental, pathogenic, and demographic factors related to

strandings, mortality, and their recent occurrence in the region are not well characterized or explained.

It was hypothesized that GFSs are migrating into the PNW and may be stranding due to factors they may not

encounter to the same extent elsewhere in their range. These risk factors may include varied pathogens, different
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predation pressures, increased human interaction, different ocean conditions, and prey availability, as well as prey

quality. The population of GFSs migrating to the PNW as a naïve population to the region may be more vulnerable

to the types of endemic diseases and fishery interactions that occur in the waters off the coasts of Washington and

Oregon than resident marine mammals. Due to hunting, GFSs experienced a severe genetic bottleneck, which has

left the population potentially vulnerable to disease outbreaks and other environmental stressors that may require

more genetic diversity to overcome (Weber, 2004). As a threatened species recovering from near extinction that

relies on one main rookery island, GFSs could be especially vulnerable to environmental factors such as El Niño

events, and the far-reaching effects of ongoing climate change (Gallo-Reynoso, 1994; Hernández-Camacho &

W. Trites, 2018; Weber, Stewart, & Lehman, 2004). To date, there have been few published epidemiological studies

which assess health trends and risk factors associated with stranding causality and disease in this species, and none

in the Pacific Northwest of the United States (Hanni, Long, Jones, Pyle, & Morgan, 1997; Lambourn et al., 2012;

Ziehl-Quiros, Garcia-Aguilar, & Mellink, 2017). In this study, trends in stranding/mortality and environmental factors

associated with the apparent return of GFSs to the PNW are described by analyzing the strandings in Oregon and

Washingnton since 2005 and evaluating which risk factors are associated with GFS mortality in this geographic

region.

2 | METHODS

2.1 | Demographic and stranding data

Stranding information, including data on morphometric signalment, demographics, and health was compiled for GFS

in Oregon and Washington at the time of the stranding by the marine mammal stranding networks along the coasts.

Collected data included stranding location, time/date, and status of the animal (live/dead). We also noted any behav-

iors and/or clinical symptoms related to stranding, or whether there were human interactions observed on the beach

when the animal was alive, and carcass condition when dead. These data were used for analysis of overall stranding

trends in the region. Demographic data collected included: sex of the animal, age class determined by body size

(a combination of length and weight as well as time of year stranding occurred) and dentition, photo-documentation,

and preliminary morphometrics (Fleischer, 1978; Gallo-Reynoso & Figueroa-Carranza, 2010). Age classes were

defined as: (1) WP – weaned pup, determined as distinct from yearling if stranding before June; (2) Y – yearling,

assigned based on stranding after June 1, length, weight, and having fully erupted dentition, including the presence

of the permanent canines, that also reflected lack of wear on teeth seen in older animals; (3) SA – subadult, based on

a size larger than typical juvenile animals, smaller than adult females, and their dentition staining and wear reflecting

an animal having foraged for multiple years; (4) AD – adult, based on length (>130 cm), weight (>20 kg), and state of

dentition evident by increased staining and wear on the teeth; and (5) UNK – unknown, when the age of a seal was

impossible to determine. Animals included in the data set were GFSs that stranded live or dead between the begin-

ning of 2005 and the end of 2016.

2.2 | Necropsy and histopathology

Necropsies were performed by trained biologists, veterinarians, or veterinary pathologists associated with the

responding stranding network using standardized protocols (Pugliares et al., 2007). Complete necropsies were con-

ducted only on freshly dead or moderately decomposed carcasses. Using the condition codes established by Geraci

and Lounsbury (1993), carcasses were deemed fresh if tissues were intact, with fresh smell, and little to no gas in

gut; this often indicated the animal was found less than 24–48 hr postmortem. These carcasses were collected for a

complete necropsy, including sample collection for further laboratory diagnostics. Carcasses that were decomposed
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with organs intact, but with bloat present in the gut were considered as moderately decomposed, taking into account

ambient temperature and immersion in water, and were deemed to be carcasses that were 3–5 days postmortem.

With moderately decomposed carcasses, limited or complete necropsies were performed depending on the extent of

autolysis and scavenging, with more limited samples harvested for follow up diagnostic testing. In some cases, scav-

enging and exteriorization of viscera hampered complete postmortem examinations, while in other cases, carcasses

were reported and documented, but not necropsied due to subsequent loss from tidal exchanges or inaccessibility

for responders.

During GFS necropsy, stomach and intestinal contents were collected; hard parts of prey were counted at the

time of necropsy and submitted to a reference laboratory for further analysis. Representative samples of parasites

found at necropsy were collected manually, identified by morphological criteria to family level by a trained biologist,

and preserved in 70% ethanol for further identification by a parasitologist. Signs of trauma were assessed upon gross

necropsy examination and included external wounds associated with hemorrhage, entanglement with fishing gear,

and hemorrhage associated with blunt force injuries. For GFSs with complete and partial necropsies, samples for his-

topathological analysis and ancillary diagnostics included tissues and lesions for isolation of pathogens via culture

and molecular methodologies. Histopathology was carried out at one of the following pathology laboratories: Animal

Health Center, OSU Veterinary Diagnostic Laboratory, Colorado State University Veterinary Diagnostic Laboratories,

or Northwest ZooPath. Representative samples from each of the major organs were collected. Tissues were fixed

immediately in 10% buffered formalin for histological examination and additional samples were frozen for further

analysis. In some instances, decomposition led to the tissues being autolyzed and therefore they were not useful for

obtaining histopathology results. If histopathology suggested a need for further testing, molecular and ancillary diag-

nostic testing was done. In select cases, more targeted diagnostic studies were pursued to confirm a specific etiol-

ogy. For ancillary diagnostic studies, sampled lesions were frozen at −20�C until analysis.

2.3 | Molecular testing and ancillary diagnostics

Histopathology or premortem clinical signs consistent with a coccidian parasite infection, including protozoal

encephalitis, was identified in 30 GFSs, and further diagnostic studies and molecular characterization were pursued.

Brain, lymph nodes, liver, heart muscle, skeletal muscle, and lung samples were sent to the National Institutes of

Health Laboratory of Parasitic Diseases in Bethesda, Maryland, to screen for Toxoplasma gondii, Sarcocystis neurona,

and Neospora caninum. To confirm the presence and determine the species of coccidian parasites, multiple laboratory

modalities were used. Indirect fluorescent antibody test (IFAT; Miller et al., 2001) was used when animals live

stranded or fresh serum was prepared from postmortem heart blood, PCR testing and immunohistochemistry was

performed on suspect cases based on necropsy or histopathology as described in Gibson et al. (2011). Primary anti-

bodies included rabbit polyclonal for T. gondii (Biogenix, San Ramon, CA), rabbit polyclonal for S. neurona (Virginia-

Maryland Regional College of Veterinary Medicine, Blackburg, VI) and mouse monoclonal antibody for N. caninum

(VMRD, Pullman, WA).

Frozen tissues for a subset (n = 36) of necropsied seals were sent to the Animal Health Center, Abbotsford,

British Columbia, to be tested for bacteriology and virology. These included lung, spleen, lymph nodes, brain, and

intestine, which were collected for conventional aerobic culture. Intestine samples (n = 29) were inoculated into

selective media for attempted Salmonella spp. isolation (Quinn et al., 2011). Lymph node, lung, brain, spleen, and

when available, thymus and tonsils were screened by polymerase chain reaction (PCR) for Brucella spp. (n = 9) and

canine distemper, and if indicated at necropsy, kidney was collected and screened for Leptospira spp. (n = 8). In addi-

tion, two live seals had serological tests for both diseases (Cameron et al., 2008; Lambourn et al., 2013). The viruses

tested for via PCR based on histopathology findings included influenza sp. (n = 20), canine distemper (n = 32), and

herpesvirus (n = 1) (Barrett, Shrimpton, & Russell, 1985; Sierra et al., 2014; Spackman et al., 2002; Wu, McFee, Gold-

stein, Tiller, & Schwacke, 2014).
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Biotoxin exposure was determined through testing for agents such as domoic acid or saxitoxin in stomach con-

tents, urine, feces, and/or blood. More specifically, samples from a subset of GFSs (n = 33) that had stomach con-

tents, urine, and/or feces available during necropsy were screened for domoic acid and saxitoxin using high

performance liquid chromatography with mass spectroscopy (HPLC-MS), receptor-binding assay, and high-

performance liquid chromatography with standard ultraviolet absorbance (HPLC-UV), respectively (Lefebvre et al.,

2010). Screenings were done by the Wildlife Algal-toxin Research and Response Network for the U.S. West Coast

(WARRN-West), at the Northwest Fisheries Science Center, National Marine Fisheries Service or the Florida Insti-

tute of Technology, Ocean Engineering and Marine Science Department.

2.4 | Causes of death (COD)

Based on the combination of gross necropsy, histopathology, and further diagnostic testing, one or more contribut-

ing causes of death were determined by the pathologist and/or the attending biologist who performed the necropsy.

Causes of death were condensed into five categories for analysis: 1 – emaciation, 2 – infectious/inflammatory dis-

ease, 3 – trauma, 4 – biotoxin exposure, and 5 – other causes. A primary COD was identified, and secondary and ter-

tiary contributing causes were also determined for multi-factorial necropsy cases. If upon necropsy the animal was

markedly emaciated with little to no blubber layer, they lacked gastro-intestinal contents, and their fat levels in tis-

sues was markedly low as determined by the attending pathologist, emaciation was inferred to have at minimum

been a contributing factor in mortality. If no signs of trauma and no other additional tests were warranted based on

histopathology and necropsy, emaciation was determined by the attending pathologist as the primary COD. An

infectious/inflammatory disease determination included gross or microscopic signs of inflammatory response to an

infectious agent, isolation/detection of pathogens from lesions, and severity of infection indicating a primary COD

above other contributing causes. Seals with evidence of fisheries interaction, entanglement, penetrating wounds,

and broad hemorrhage indicative of blunt force injury were all considered to have had trauma as a contributing fac-

tor to mortality, if not as the primary cause of death. The more specific diseases, trauma, and other causes were

determined upon gross and microscopic analysis and are presented in the Results; however, they were not used in

statistical analysis due to the limited sample size for each. Primary, secondary, and tertiary CODs were assigned

when possible for necropsied GFSs and all three were considered contributing CODs for downstream analysis. In

some cases, contributing causes of death were evident, however, a definitive primary COD was unable to be deter-

mined due to scavenging and/or decomposition. If the animal did not clearly fit into one of the leading causes of

death listed, and primary COD was determined, then they were listed as “Other” and are described further in the

results section.

2.5 | Statistical analysis

All statistical analysis included demographic and cause of death data collected from each level of examination dis-

cussed above, along with the environmental risk factors such as ocean conditions. All data were analyzed using the

software R version 3.3.2 and SaTScan. Location, month and year of stranding, age class, sex, and ocean condition fac-

tors were used as stranding risk factors for all GFSs. Monthly oceanographic data and ecological integrity data were

collected from the Pacific Fisheries Environmental Laboratory Live-Access Server (http://www.pfeg.noaa.gov), as

well as from the National Data Buoy Center for Station 46050, the buoy at 44.6�N and 124.5�W, Stonewall Bank

(20 nmi west of Newport, Oregon), and used as independent variables in the logistic regression analysis. These fac-

tors included: the Pacific Decadal Oscillation index (PDO), which is a monthly value (range −3 to 3) calculated from

the spatial average of sea surface temperature in the Pacific Ocean; upwelling index, which is measured in

m3/s/100 m coastline and indicates amount of upwelling occurring from deep nutrient rich water to the surface;
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monthly average sea surface temperature at the buoy (SST) measured in Celsius degrees (�C); multivariate El Niño/

Southern Oscillation index (MEI), a bimonthly time series index calculated from SST, sea level pressure, zonal and

meridional components of the surface wind, and outgoing longwave radiation over the tropical Pacific basin; monthly

northern copepod biomass anomaly, which is a measure of biomass above or below the average set at 0 with a range

of −2 to 2; the monthly southern copepod biomass anomaly with a measure above or below the average set at 0 with

a range from −2 to 2; and monthly copepod community richness, which is a measure above or below the average set

as zero with a range of −10 to 10. The stranding risk factors, and ocean condition risk factors were used in regres-

sion analysis to determine their association or potential effect on the number of strandings, as well as for each lead-

ing cause of death as described below.

The sample size of fur seal strandings did not allow for use of all the variables without overparameterization,

therefore a reduction of the collinear factors was necessary. Kendall rank correlation analysis was used to determine

correlations between ocean condition factors (SST, northern copepod biomass index, southern copepod biomass

index, copepod richness, PDO, upwelling, MEI) and factors that were correlated with five or more other factors were

not included in the analysis. Bivariate regression analysis was done with the noncolinear factors to determine signifi-

cance and effect of the individual variables on the counts of strandings. Factors with p < .25 were included in the

multiple regression analysis. This less strict p-value was required at this early step to accommodate the amount of

collinearity of the multiple ocean condition factors of interest and the low sample size during the initial bivariate

regression analysis. Interactions of the independent variables were included in the model analysis as well. Forward

model selection was used to find the best fit model by use of the log likelihood ratio test, this model selection was

based on p = .05 as is standard for analyses.

A zero-inflated negative binomial model (ZINB) was used for the regression analysis of the number of strandings

per month over the entire time frame. Residuals of a Poisson regression revealed the data were zero-inflated and

overdispersed. Therefore, the Vuong test was used to compare nonnested models for fitness to the data, and rev-

ealed the ZINB model was most appropriate (Burger, Van Oort, & Linders, 2009; Greene, 1994). The ZINB regression

analysis employs a two-part model with a count model and zero-inflated logit model that discerns the processes with

which the zero outcomes are associated, such as, seasons or months with few to no strandings in any year. As sea-

sonality of strandings is well known, descriptive statistics on the role of seasonality on stranding demographics was

conducted, which led to seasonality being used for the zero-inflated logit linked portion of the model, winter was

used as the reference variable (December–February), while the count portion of the model employed the ocean con-

dition factors as well as year and month. The seasons broken down by month are as follows: Spring, March–May;

Summer, June–August; Fall, September–November. The best fit model was selected through forward model selec-

tion based on use of the log likelihood ratio test, and the final model was validated using a randomly selected subset

of the data.

The main causes of death were analyzed for spatio-temporal clustering using the freeware SaTScan. The

Bernoulli model was used for each leading COD separately to find spatio-temporal clusters unique to each leading

COD (Kulldorff, 1997). In addition, a multinomial clustering approach was used to determine concurrent clusters

of the categorical contributing causes of death according to time and space, and whether certain CODs occurred

together in areas and time (Jung, Kulldorff, & Richard, 2010). Logistic regression analysis was conducted to deter-

mine risk factors related to each of the leading cause of death categories. Each primary cause of death category

had a separate regression analysis, where the outcome variable was death due to the specific category compared

to those with other causes of death. Therefore, this analysis only included seals with determined CODs (n = 93).

The environmental risk factors that could be related to the COD were examined through bivariate logistic regres-

sion analysis for each primary and contributing cause of death. The multiple regression analysis was only carried

out for the COD for which significance (p < .05) was observed during the bivariate analysis that indicated a rela-

tionship between ocean condition and the COD. The best fit multiple logistic model for the leading COD was then

determined by the smallest Akaike information criterion (AIC) value during a backwards stepwise regression

analysis.
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3 | RESULTS

3.1 | Demographic and stranding range

Strandings of GFSs in the PNW were first reported in 1992 (n = 2) and have been increasing with regularity since

2005, ranging from one seal in 2005 to a high of 56 seals in 2012, with fluctuations around a mean of 14.1 per year

and a median of 8.5 (Figure 1). Of the 169 GFSs stranded, 21 were live at response and 148 were dead; of the 21 live

stranded GFSs, 7 subsequently died, therefore 155 seals were dead at final disposition. Throughout the study more

juveniles stranded than any other age class, with a total of 139 yearlings, 20 weaned pups, 4 subadults, 5 adults, and

1 unknown age class. Of the stranded GFS there were 53 confirmed females 55 males, 61 of unknown sex. Regard-

less of age class and sex, the majority of strandings occurred between May and July (n = 152, 89.9%) with June as

the peak month of stranding every year since 2005 (Figure 2). Strandings ranged along the entire Oregon and

Washington Pacific coasts (Figure 3).

3.2 | GFS stranding numbers regression analysis

The log likelihood test revealed that the best fit model including season as the logit portion only included the covari-

ate of upwelling as a variable explaining increased stranding (Table 1). Correlation analysis revealed only five vari-

ables to be used in the bivariate analysis to avoid collinearity: year, month, upwelling, southern copepod biomass

anomaly index, and copepod richness. MEI was significantly correlated with eight variables so was not included in

the multiple regression analysis. However, as MEI has been related to GFS movements previously, a bivariate ZINB

regression analysis was done using MEI as the independent variable, and revealed it was not significantly related to

strandings of GFS in the PNW (p > .06). The bivariate ZINB regression analysis of the five noncollinear factors kept

year, month, and upwelling for further multiple variable analysis. These variables were then included in a multivari-

able ZINB regression analysis and the best fit model with upwelling and season included was determined by use of

the log likelihood test. The model was validated by applying a randomly selected subset of the data to ensure no

assumptions were violated. As seasonality was an important consideration during the analysis, the demographic and

F IGURE 1 Number of Guadalupe fur seals (n = 169) strandings per year in Oregon and Washington from 2005

to 2016.
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F IGURE 2 Number of stranded Guadalupe fur seals in Oregon and Washington (n = 169) of each age class for all
months of the years 2005 through 2016; WP: weaned pup (n = 20), Y: yearling (n = 139), SA: subadult (n = 4), AD:
adult (n = 5), UNK: unknown (n = 1).

F IGURE 3 Map of all stranded
Guadalupe fur seals (n = 169) in
Oregon and Washington from 2005
to 2016 including animals with
determined causes of death. Red
circle indicates the significant cluster
of trauma cases from the Bernoulli
clustering analysis and the blue circle
indicates a cluster of emaciation and
infectious disease cases from the
multinomial clustering analysis,
included animals (n = 99) with all
having one of three primary causes
of death or stranded alive.
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cause of death numbers by season showed that most seals stranding in the summer were juvenile animals (97%,

n = 129/133), while only five animals stranded during winter months, four of which died (Table 2).

3.3 | Necropsy and histopathology results

The three major causes of death categories found for the 93 necropsied GFSs were emaciation, trauma, and infec-

tious disease. Small sample sizes precluded analysis of beyond two over-arching categories of infectious disease and

trauma (Table 3). Emaciation and infectious disease occurred concurrently in nearly half of examined GFSs (n = 41).

Emaciation was the most common contributing COD (n = 66) and was determined to be the primary COD in 41 cases

(44.1%, Table 3). Infectious or inflammatory disease was the second most common contributing cause (n = 49) and

was the primary COD in 18 cases (19.4%). Trauma of various origins contributed to the mortality of 36 GFSs and

was the second most common primary COD (n = 27, 29.0%), the types of trauma included, entanglement or fishery

related trauma (n = 13), blunt force trauma (n = 11), bullet wounds (n = 2), and shark attack (n = 1) (Table 4). In GFSs

examined in this study, 13 seals died due to entanglement or fisheries interactions, either suspected or confirmed by

gear entanglement or bycatch, these cases accounted for 48.1% of the trauma cases and the most common cause of

trauma, followed by blunt force trauma (40.7%, n = 11; seen by extensive internal hemorrhage). Of the seals

necropsied, 19 (20.4%) had indications that human interaction was related to death via trauma either as the primary

or secondary COD, while the majority (n = 61) were cases in which human interaction could not be determined, and

the remaining cases were determined to not be related to human interaction.

TABLE 1 Multiple zero-inflated negative binomial (ZINB) regression analysis best fit model for factors associated
with strandings per month in 169 stranded Guadalupe fur seals from 2005–2016 in the Pacific Northwest of the
United States. Model construction used environmental variables in the negative binomial count model and seasons
in the inflation model with winter as the reference variable. Best fit model selection based on log likelihood
ratio test.

Factors p Odds ratio

Negative binomial count coefficients

Upwelling .0137 1.01

Zero-inflation logit coefficients

Spring .332 0.359

Summer .217 0.247

Fall .993 2.36e-8

TABLE 2 Demographics of numbers of Guadalupe fur seal strandings in Oregon and Washington during each
season and the causes of mortality found during those seasons.

Season Total Juveniles Adults Males Females
Trauma
cases

Infectious

disease
cases

Emaciation
cases

Winter 5 3 2 1 2 1 2 0

Spring 23 21 2 7 7 1 2 8 (20.5%)

Summer 133 129 (97%) 3 45 29 23 (88.5%) 14 (77.8%) 29 (74.4%)

Fall 8 6 2 1 4 1 0 2

Total 169 159 9 54 42 26 18 39
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3.4 | Ancillary diagnostics results

Upon necropsy, 85 GFSs' stomach and/or scat contents were analyzed, 50 GFSs had no food contents in their sto-

machs, 9 seals were either too decomposed or had a scavenged stomach at necropsy, 2 had plastic or Styrofoam in

the stomach, 26 had minimal food contents found somewhere in their gastrointestinal tract, and one had a stomach

with approximately 1,400 ml of fish remains including five partially digested sculpins. Seals with food contents had

the following prey items found in their stomachs: squid beaks (n = 9), some of which were identified as boreal

clubhook squid (Onychoteuthis borealijaponica) (n = 4), boreopacific armhook squid (Gonatopsis borealis) (n = 1), and

clawed armhook squid (Gonatus onyx) (n = 1), fish parts including from smelt (Osmeridae spp.), herring (Clupea spp.), a

sanddab (Citharichthys sp.), a North Pacific lanternfish (Tarletonbeania taylori), lamprey (Petromyzontiformes spp.),

greenling (Hexagrammidae spp.), and skate spp. (n = 12), shrimp (n = 5), and crab/crustacean parts (n = 2).

Necropsy and histopathology results in many cases led to bacteriology, parasitology, toxicology, and viral detec-

tion, the results of which were taken into account when determining primary and contributing COD. The number of

animals tested for each were as follows: protozoal parasitology n = 30, helminthic parasitology n = 21, bacteriology

n = 36, toxicology n = 33, and viral detection n = 28. Seals with clinical signs upon necropsy of coccidian parasite

infection (n = 30) were tested via polymerase chain reaction (PCR) and immunohistochemistry (IHC) for coccidian

parasitic infections. Of the 30 suspect positive seals, 22 were found to be positive for at least one coccidian parasite

(Table S1). Eighteen had associated disease processes and pathology, including inflammation present in tissues and

evidence of meningoencephalitis, which were deemed by the attending pathologist to be either a contributing or the

primary cause of death. Fifteen seals tested positive for T. gondii via immunohistochemistry in lymph nodes and/or

PCR from brain, muscle, lymph node, and/or heart. Eleven GFSs were PCR-positive for S. neurona, including one

adult GFS which also tested positive via IFAT screening while alive then subsequently died, showing pathology in

TABLE 3 The primary and contributing causes of death reported for Guadalupe fur seals that were examined
during necropsy in Oregon and Washington between 2005 and 2016, including sex and age class determined during
examination. Contributing COD includes the number of primary COD cases for that category along with secondary
and tertiary CODs when determined.

Cause of death (COD)
Primary
COD

Contributing
COD Males Females Juveniles Subadults Adults

Emaciation 41 69 17 16 33 0 2

Infectious disease 18 49 8 8 13 1 2

Protozoal parasitic disease 4 18 1 3 3 0 1

GI parasites 1 8 1 0 1 0 0

Bacterial sepsis 2 2 0 1 0 0 1

Hepatitis 0 1 1 0 0 1 0

Unknown infectious

disease process

11 20 4 5 9 0 0

Trauma 27 36 12 11 25 2 0

Predation 1 1 1 0 1 0 0

Human related trauma 17 20 7 6 15 2 0

Unknown cause of trauma 9 15 2 5 9 0 0

Other – Toxic exposure 1 2 0 0 1 0 0

No primary COD identified 6

Total seals 93
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the brain consistent with an S. neurona infection. Three tested positive via PCR for N. caninum. One of the

N. caninum positive GFSs was also infected with S. neurona, the other two were infected with both T. gondii and

S. neurona. The details associated with the protozoan parasite testing results are found in Table S1.

Pathogens detected with lower frequency included gastrointestinal helminthic parasites and bacterial pathogens.

The gastrointestinal helminths observed in 21 GFS during necropsy are detailed in Table S2. In general, the level of

infection with gastrointestinal helminths was low in necropsied GFSs. A subset of 36 seals with suspect pathology

and/or available frozen tissues were analyzed for bacterial pathogens via bacterial isolation methods; 25 tested posi-

tive upon culture or PCR for one or more gram-negative and gram-positive bacteria. Most were found in the intesti-

nal tract; however, many were also found in spleen, lung, or lymph nodes, with occasional culturing of bacteria from

the brain. Bacteria of note that were cultured and detected via PCR from these 25 GFSs are detailed in Table S3.

The additional diagnostic testing included tests for biotoxins and viruses when warranted based on clinical signs

upon histopathology or a foreseen risk based on biotoxin presence in conspecifics in the region at the time of

stranding. Cases with domoic acid toxin were detected, but no positive cases of saxitoxin, nor any positive cases of

viral infections for any of the target viruses (influenza sp. and canine distemper). Of the 33 GFSs with urine, feces, or

serum tested for biotoxins, six tested positive for detection of domoic acid by Biosence ELISA. Only one of the six

positive cases showed signs of pathology associated with domoic acid toxicity. As there was only one case of domoic

acid toxicity, this contributing COD is listed as “other” for the remaining analyses. Based on histopathology no other

diagnostic tests were required.

3.5 | Spatio-temporal clustering

Bernoulli spatial and temporal clustering models for each of the three main causes of GFS death revealed only one

significant cluster of trauma cases; the center was located at 46.16�N, 123.97�W with a radius of 68.65 km

(Figure 3). In that area, 16 of 21 (76.2%) GFSs died from various types of trauma. Other clusters for different individ-

ual CODs were found during the analysis, however, none were significant. Multinomial spatial clustering analysis

showed two significant clusters with multiple causes of death concurrent in two areas. The first significant cluster

TABLE 4 Types of trauma found contributing to and as the primary cause of death (COD) in Guadalupe fur seals
stranded in Washington and Oregon between 2005 and 2016. Contributing COD includes the number of primary
COD cases for that category along with secondary and tertiary CODs when determined.

Cause of trauma
Primary
cases

Contributing
cases Males Females Juveniles Subadults

Entanglement/Fisheries related trauma 13 14 4 6 12

Confirmed 5 6 1 3 4

Suspected from lesions upon necropsy 8 8 3 5 8

Blunt force trauma 11 16 5 5 9 1

Suspected human related trauma 3 3 2 1 2

Unknown cause of trauma 8 13 3 4 7 1

Shot 2 2 1 1 1 1

Predation – shark 1 1 1 0 1

Penetrating lacerations – unknown origin

leading to bacterial sepsis

0 2

Total cases 27 36 11 12 23a 2a

aThere were no adult animals that died due to acute trauma, however, there were two animals with unknown age classes.
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(p = .004) was predominantly trauma cases (emaciation = 2, trauma = 13, infectious disease = 3, other = 1), and was

found localized in roughly the same area as the individual Bernoulli trauma cluster; so, it was not included on the

map (45.72�N, 123.94�W, radius = 78.71 km). The second significant multinomial cluster was found further north

(46.95�N, 124.17�W, radius = 20.71 km; Figure 3) and included emaciation and infectious diseases cases (n = 15 and

6, respectively).

3.6 | Factors relates to major causes of death

The logistic regression analysis of factors such as ocean conditions relating to the leading cause of death showed

that emaciation was the only major COD category for which ocean conditions were related. No factor was found to

be significantly related to trauma cases or infectious disease cases during the bivariate logistic regression analysis,

therefore only emaciation was used to explore the effects from ocean conditions (Table S4). From this analysis, five

factors (month, PDO, northern copepod index, southern copepod index, and copepod community richness) were ini-

tially included in the multiple regression analysis for the leading COD, emaciation. Through multiple regression analy-

sis, the final model revealed that emaciation was most related to PDO (odds ratio: 1.713%–71.3% increased odds,

p = .106) and copepod richness (odds ratio: 0.937%–6.3% decrease in odds, p = .470). This analysis does not account

for interactions of emaciation and infectious disease, which have been observed and could contribute to mortality

outcomes in many GFSs.

4 | DISCUSSION

Reemergence of GFSs in their northern historic range, and subsequent strandings, are seasonally driven and occur

during times when upwelling of cold nutrient-rich deep water is highest in the region. Juvenile GFSs strand and

appear to be migrating north postweaning, which is consistent with the archeological findings in northern

Washington indicating a predominance of this age class historically, and a study utilizing telemetry after rehabilita-

tion and release (Etnier, 2002; Lander, Gulland, & DeLong, 2000; Norris, DeRango, DiGiovanni, & Field, 2015). These

juvenile seals appear to be stranding in greatest numbers due to some of the most common causes of death in

postweaning pinnipeds, emaciation, trauma, and infectious disease which reflect early stage postweaning seals being

unsuccessful in their attempts to forage and thrive independently in this area (Huggins et al., 2013; Steiger et al.,

1989; Warlick et al., 2018). Trauma cases were found clustered in northern Oregon and the southern portion of

Washington, which is a known area of high productivity and commercial fishing (Wieting, 2012). A small cluster of

emaciated and infectious disease cases was found further north in Washington, centered near Ocean Shores. Infec-

tious agents such as gastrointestinal, and particularly coccidian parasites, were found more commonly than other

pathogens. Ocean conditions associated with high productivity were related to strandings and the major COD, ema-

ciation. The seasonality of GFS strandings and these ocean conditions show that juvenile GFSs are likely moving in

search of prey associated with the highly productive time of year.

Seasonality is implicated as a driving force for the presence of GFSs in this area. During the summer months

when strandings were most prevalent, ocean currents bring nutrient rich, cold water from the northern seas into the

PNW waters and upwelling brings up nutrient rich, deep water (Peterson et al., 2014). Confluence of currents and

upwelling lead to nutrient rich and highly productive waters in this area, which are utilized by many marine animals,

including large schools of migrating fish stocks exploited by a wide range of predators. It is possible that the GFSs

are following northward migrating prey sources such as squid, sardines, and anchovies from Mexico and California,

or that they are migrating north to find seasonally abundant prey in these productive waters (Wetherall, 1991). The

mere seasonal increase of GFSs, as well as an overall yearly increase in the area, as documented in this study, may be

the driving factor for increased stranding events. Our results support this conclusion, as seen by the relation of
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monthly variation of upwelling and season to increase strandings, and the significant effects of season and increased

SST in initial bivariate models. Similar findings looking at SST, productivity, and changes in GFS foraging habits has

been observed in Mexico related to El Niño events, which are commonly associated with a higher SST (Elorriaga-

Verplancken et al., 2016). This study did not find that increased stranding of GFSs in the Pacific Northwest was

related to El Niño events or any extreme warming event as documented elsewhere in their range, as neither SST nor

the MEI were kept in the final most explanative model or found to be significantly related to increased stranding, as

upwelling and seasonality were. There may be observation bias during the summer due to an increased presence of

beachgoers to report the stranding events more frequently. However, the potential bias cannot explain the degree

of seasonality witnessed in this study, as there are still surveys on many beaches conducted during the other sea-

sons, and the results found are consistent with the life history of this species seen previously.

Juvenile pinnipeds strand more than any other age groups because they are naïve to challenges in their ecosys-

tem (Baker, Jepson, Simpson, & Kuiken, 1998; Hanni et al., 1997; Osinga et al., 2012). Weaned pups are at the most

difficult stage of their life as they quickly exhaust fat stores obtained through nursing and are learning to forage

(Bowen, den Heyer, McMillan, & Iverson, 2015; Gerdts, van Drunen Littel-van den Hurk, & Potter, 2016; Harding,

Fujiwara, Axberg, & Harkonen, 2005). Our findings, that young GFSs in Washington and Oregon are in suboptimal

nutritional condition, are consistent with these natural trends. Increased presence of juvenile GFSs in the PNW may

indicate that they are avoiding competition with adults for resources or following a relatively easy prey source to for-

age on. However, this puts these young GFSs at risk of trauma due to predation or fisheries interactions as well as

novel pathogens. After weaning, young animals no longer benefit from continued exposure to maternal antibodies

and therefore have a relatively naïve immune system to pathogens (Ross, Pohajdak, Bowen, & Addison, 1993; Ross

et al., 1994; Van de Perre, 2003), which can lead to an increased risk of succumbing to infectious disease.

Trauma, emaciation, and infectious disease were found occurring in all age classes along the Washington and

Oregon coasts, however, distinct clusters were identified. A cluster of trauma cases around the mouth of the Colum-

bia River observed in our study (Figure 3) is of interest as this is a heavily used area by the fishing industries, and one

of the leading causes of death due to trauma were fisheries interactions, including entanglements (Hirose, Miller, &

Hill, 1998). The role of fisheries in GFS and marine mammal deaths should be further studied and reduced where

possible. Upon necropsy, often the only sign indicating acute trauma in GFSs was hemorrhage, leading to a limited

determination of blunt force trauma as the likely type of trauma without a definitive source being determined, such

sources could be predation or human related. Human interaction related to mortality in marine mammals is often dif-

ficult to assess adequately unless gear from fisheries is found or obvious signs of human related trauma are present,

so it is possible human interaction is underrepresented in this study (Moore et al., 2013).

The other cluster of CODs found near Ocean Shores, Washington, consisting of emaciation and infectious dis-

ease cases, could indicate that, when further north, reduced physical fitness is the leading risk factor to cause mortal-

ity. There could be reduced risk of trauma in this area, thus seals stranding there are dying due to overall lack of

fitness rather than any acute cause. The relationship between a high PDO and a low copepod species richness with

emaciation cases indicates that in low productivity conditions there is a 71.3% increased chance of dying of emacia-

tion. It appears that these factors together are good indicators for low prey availability and an increased risk of GFSs

dying of emaciation. Their unusual mortality event in California in effect since 2015, during which many emaciated

GFSs stranded along the west coast, suggests a lack of resources throughout the California current system as well

(Norris et al., 2015). While emaciation is seen in wild animals frequently due to a variety of circumstances, the infec-

tious agents putting these GFSs at risk could become more problematic as young and nutritionally challenged GFSs

continue to re-establish this portion of their range.

Emaciation and nutritional stress are known to compromise immune systems, which allow a pathogen to cause

disease postinfection, comparatively, an infectious agent could decrease the animal's fitness leading to emaciation

from lack of adequate nutrition (Klasing, 1998). It is difficult to know if an infectious disease decreased the viability

of the animal and led to emaciation or vice versa. Likely in some cases, one preceded the other, but when both occur

an animal has little chance of success in the wild environment. The concurrence of these causes further shows that
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the GFSs are in a state of reduced viability further north in the PNW whether it be by pathogen load and/or lack of

resources. This could be an area of increased pathogen levels or more likely, somewhere along the migration they

encountered disease causing pathogens, thus reducing fitness during their movement north.

The pathogens found most commonly in stranded GFSs during this study were coccidian and gastro-intestinal

parasites. However, it is likely that the bacterial pathogens and potentially viral pathogens are underrepresented in

our study as only subsets of seals were tested for such pathogens. The coccidian parasites, Toxoplasma gondii and

Sarcocystis neurona, appear to have the greatest prevalence of any pathogens in GFSs. However, these parasites are

screened for more rigorously and readily than other microscopic pathogens, so the higher coccidian prevalence may

be an artifact of limited testing for other pathogens. It is possible that GFSs are exposed to these parasites anywhere

along the west coast as they migrate; however, T. gondii, S. neurona, and N. caninum are prevalent in marine mammals

on the coast of Oregon and Washington, so the potential for their exposure in the PNW is highly plausible (Barbosa

et al., 2015). Many species of marine mammals are found to be infected with parasites in this area and California, as

well as many species having high mortality due to co-infection of these parasites or infection with a particularly path-

ogenic genotype (Barbosa et al., 2015; Gibson et al., 2011; VanWormer et al., 2014). Future work should include

determining the genotypes of T. gondii, S. neurona, and N. caninum in their respective endemic host species in Oregon

and Washington compared to southern California or Mexico to inform whether infection of GFSs is geographically

restricted.

Gastrointestinal helminths were relatively common in stranded GFSs as well and are comparably easy parasites

to discover upon gross examination. The level of gastrointestinal parasitic infections found in the present study did

not appear to have a major direct impact on the health of the GFS population, but instead may have contributed to

overall lack of physical fitness. In this study, a few specimens of anisakid nematodes; Anisakis simplex 1, Contrac-

aecum, and Pseudoterranova were found in stomachs and small intestines of GFSs. Anisakis simplex 1 is more typically

found in cetaceans than pinnipeds with the capability to cause severe health problems for young pinnipeds (Smith &

Wootten, 1978; Spraker, Lyons, Tolliver, & Bair, 2003). Prevalence of gastrointestinal parasites in GFSs has largely

been unknown; however, prevalence of these parasites in other pinnipeds in the region has been well documented

for decades (Dailey, 2005; Keyes, 1964; Kuzmina, Lisitsyna, Lyons, Spraker, & Tolliver, 2012; Kuzmina, Lyons, &

Spraker, 2014; Shults, 1986). It is expected that these parasites are underrepresented in the data set, as rigorous

monitoring for them was not undertaken until midway through this study, nor do we know what their prevalence is

in nonstranded GFSs. Thus, insufficient data are available to describe the entire parasite community of GFSs in this

study. The occurrence of parasitic infections in GFSs is of interest for stranding responders and rehabilitators aiming

to improve response in the future.

Since 2005, a high number of stranded GFSs has occurred, while the yearly trend has increased gradually. While

there were two years with higher stranding numbers than others, no ocean condition factors were found to be

directly related to these higher stranding years. In this study the two years with the highest number of strandings

were 2012 which was classified as a La Niña year, and 2016 which was considered an El Niño year, so while these

two years saw higher numbers the ocean conditions were very different. It is necessary to continue monitoring

stranding trends in relation to ocean conditions and their population growth to determine if anomalous weather or

ocean conditions are directly related to higher numbers or if it more closely related to years of high pupping num-

bers. Their presence and subsequent strandings will likely continue under similar circumstances, as elucidated during

this study. It is presumed that the stranded GFSs are an underrepresentation of both the live and deceased seals pre-

sent in the area, and it is possible that even with regular beach surveys some stranded GFSs were overlooked

(Huggins et al., 2015). However, dedicated efforts by stranding networks to find stranded seals via beach surveys

were conducted semiregularly in the study area as many beaches in Washington and northern Oregon can be sur-

veyed via vehicle. This ability may add observer bias and contribute towards more strandings being reported in

northern Oregon and Washington south of the Olympic National Park as access to beaches in southern Oregon and

the Olympic National Park is logistically challenging. However, the widespread strandings discovered throughout the
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region and the variation in major COD between clusters indicate that this bias would not likely drastically change the

clustered areas if completely corrected for.

This study was the first to undertake an epidemiological study to investigate variables affecting GFSs strandings

in the PNW; including the effects of ocean condition on stranding numbers and emaciation. These results indicate a

need to further monitor the presence of this species and ocean condition changes related to seasonality and climate

change. While no single specific disease was found to be a major cause of death, there were cases of infectious dis-

eases documented in GFSs that are of importance to other marine mammals and humans such as S. neurona,

T. gondii, and Anisakis. Further studies on the genetics and diseases of this species may elucidate the downstream

effects of the genetic bottleneck seen in this species, which may increase risk for the entire population to novel path-

ogens (Weber et al., 2004). Elevated risk of trauma around the mouth of the Columbia River, including human related

trauma, indicates a need for further monitoring of the fisheries and boat activity common in that region. The findings

of this research suggest that no single pathogen or source of trauma are driving deaths in GFSs or their overall

stranding in the PNW.

It is our determination through this study that the increased levels of stranding are likely due to an elevated use

of this habitat within their historic range and suggest a healthier population size overall, which was estimated in

2016 at approximately 20,000 individuals and similar conclusions have been suggested to explain their use of areas

in central Mexico as well (Carretta et al., 2017; Ortega-Ortiz, Vargas-Bravo, Olivos-Ortiz, Zapata, & Elorriaga-Ver-

plancken, 2019). As the climate continues to change, and anomalous ocean and weather conditions increase, the

continued assessment of risks and subsequent effects in ecosystems is needed if we are to minimize damage to spe-

cies like the Guadalupe fur seal, which are currently threatened (Hernández-Camacho & W. Trites, 2018). Habitat

reconstruction, shifts or reclamation due to climate change, have been documented previously for a range of marine

predators, and studies done thus far suggest a continued need to assess such changes as this study has done for

GFSs (Bakun et al., 2015; Hazen et al., 2013). The reemergence of this population in the PNW we found occurring is

a testament to the effective implementation of the Marine Mammal Protection Act, the Endangered Species Act,

and their protections under Mexican law. When increasing human impacts on ecosystems threaten many species,

continued and enhanced regulation of fisheries is needed. Such actions can further reduce fisheries interactions with

marine mammals, thus reducing a known and documented risk for the recovering GFS population. Additionally, as cli-

mate change continues to change ocean conditions, overall productivity, and prey availability, threatened species like

the Guadalupe fur seal will likely be put at risk regardless of their population growth and the stability gained from

conservation efforts.
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