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Abstract
1.	 Natural populations that are rare, cryptic or inaccessible provide a monumen-

tal challenge to monitoring, as adequate data are extremely difficult to collect. 
Surveys often encompass only a small portion of a population's range due to 
difficult terrain or inclement weather, especially for populations with extensive 
ranges. Thus, to maximise encounters, sampling efforts may be largely oppor-
tunistic or biased to accessible areas. The resulting sparse and spatially biased 
data may be difficult to model, standardise across years and incorporate into an 
assessment or management framework. However, in many monitoring programs, 
there are usually multiple threads of data that, though each may have its own 
limitations, can be synthesised to reveal important ecological processes.

2.	 Here, we demonstrate a simple technique to incorporate two additional streams 
of data on the same population, telemetry and survey effort data, into capture-
recapture analyses to address spatiotemporal sampling bias using simulated data. 
Utilisation distributions (UDs) computed from telemetry data are overlaid with 
UDs of survey efforts, providing an ‘effort by animal space use’ overlap covariate 
for modelling detection in a Jolly–Seber open population model.

3.	 Using simulated data, we found that our method resulted in more accurate and 
precise estimates of abundance than traditional capture-recapture models. We 
then applied this method to a 16 year photo-identification capture-recapture 
dataset (n = 143 individuals) along with telemetry data (n = 44 satellite tag deploy-
ments) collected from the endangered population of false killer whales resident 
to the main Hawaiian Islands.

4.	 Incorporating space use and effort into this analysis improved precision of abun-
dance estimates relative to previous modelling endeavours.
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1  |  INTRODUC TION

Robust assessments of population abundance and trends are nec-
essary to develop effective management strategies and moni-
tor outcomes of conservation actions (Dobson,  2005; Nichols 
& Williams,  2006; Sibly & Hone,  2002). However, evaluating wild 
populations presents a formidable challenge to ecologists due to 
the logistical and financial demands of field efforts, as well as the 
subsequent task of fitting appropriate statistical models to estimate 
abundance (Lindenmayer & Likens, 2010; Reed & Blaustein, 1997; 
Yoccoz et al., 2001).

Particularly for rare, cryptic or inaccessible populations, survey 
efforts tend to have low encounter rates and may lack spatial and tem-
poral consistency or coverage, with practical and financial hurdles to 
reasonably repeat surveys at a system-appropriate rate to determine 
trends (Dobson, 2005; Petrovskaya et al., 2012; Thompson, 2004). 
The resulting sparse datasets may preclude modelling of import-
ant processes and suffer from unmeasured biases, limiting power 
to assess abundance, extinction risk and other important metrics 
(Doak et al., 2005; Lesser & Brewer, 2012; Rosenbaum, 1991). When 
using capture-recapture (CR) methods for estimating abundance, 
variation in the exposure of individuals to sampling arising from 
this spatiotemporal bias in field efforts can obscure interpretation 
of estimated abundance, as it is unclear to what proportion of the 
population any analysis extends (Hammond et  al.,  2021; Marsh & 
Sinclair, 1989). Consequently, survey efforts are difficult to incorpo-
rate into management frameworks, which is particularly egregious in 
recovery plans for vulnerable populations, which may be more likely 
to present challenges to sampling. When CR data are collected with 
spatial reference, spatially explicit CR (SECR or SCR) models can the-
oretically be manipulated to account for varied spatiotemporal ef-
fort (Tourani, 2022), however, they require animals having relatively 
constrained home ranges and movement relative to the study area 
(Sollmann et al., 2012). Here, we present a straightforward method 
for incorporating auxiliary location data to account for varied spatio-
temporal effort in nonspatial CR models to estimate abundance of 
wide-ranging species.

Conventional CR models are generally not equipped to account 
for the spatial and temporal bias inherent to opportunistic study 
designs. Some modifications have been developed to address these 
concerns, either as alterations to the modelling framework or in 
post-processing steps. For example, analysts may adjust abundance 
estimates by the proportion of the study area sampled in systems 
where it is appropriate to assume the population is uniformly dis-
tributed and remains stationary relative to survey efforts (Defeo 
& Rueda, 2002; Thompson, 2004). However, this method requires 
sufficient system knowledge to evaluate such assumptions and 
would not be reasonable for wide-ranging or highly mobile popu-
lations for which survey efforts can only cover a small portion of 
the population's range. Other methods to account for study designs 
that vary among sampling occasions include changes to the model 
structure or framework, such as estimating site- and time-specific 
detection probabilities in CR methods (Agresti,  1994). Further, 

availability bias, or heterogeneity in capture probability, cannot be 
modelled explicitly. Instead, it must be explained by individual co-
variates (if available) or approximated by classical models of latent 
heterogeneity such as the beta-binomial mixture model (Burnham & 
Overton, 1979), the logit-normal mixture (Coull & Agresti, 1999) or 
finite mixtures (Norris & Pollock, 1996). Estimating these additional 
parameters or fitting more complex models can be incredibly data-
hungry, especially when analysts must also account for variation due 
to groupings such as sex or social group. Ultimately, such solutions 
are often inaccessible to researchers fitting models to sparse data-
sets that do not have the power to estimate additional parameters 
demanded by saturated or complex model structures.

While isolated data streams may prove insufficient to obtain 
robust estimates of population parameters, there is a rapidly grow-
ing body of work to synthesise multiple data sources to take on the 
task (Gardner et al., 2022; Grace et al., 2016; Hostetter et al., 2019; 
Schaub & Abadi, 2011; Zipkin et al., 2019; Zipkin & Saunders, 2018). 
Monitoring efforts often pursue multiple lines of data, and incor-
porating different data types into population analyses allows re-
searchers to efficiently make use of all available information to 
improve resulting parameter estimates (Gardner et al., 2022; Jarrett 
et  al.,  2022; Schaub et  al.,  2007). For example, studies of animal 
abundance and distribution are often conducted independently of 
research on movement and space use, despite the obvious links be-
tween the processes (Morales et al., 2010). Availability of animals to 
survey efforts as well as spatial variation in density directly impact 
probability of detection and may be informed by movement data. 
In recent years, there has been an effort to incorporate animal te-
lemetry data into spatially explicit capture-recapture models (see 
Tourani  (2022) and the recent Ecology special issue highlighted by 
Converse et al. (2022)). SCR models account for heterogeneous de-
tection by explicitly modelling an animal's movement about its home 
range and the relative exposure of its home range to detection by 
fixed surveys (e.g. camera traps) or other sampling (e.g. DNA sam-
pling). In these models, animals move through a study area depend-
ing on an activity center and a dispersion parameter, which are often 
estimated using the locations of individual detections. SCR methods 
are under intensive development, for example, recent advances in-
clude integrating telemetry data to inform the dispersion parame-
ter (McClintock et al., 2022), allowing for dynamic activity centers 
based on Markovian or random transience and dispersal (Royle 
et al., 2016), and using nonparametric methods to define the home 
range (Hooten et al., 2023).

Available SCR methods may not be applicable in all systems, 
especially those with highly mobile and elusive populations with 
large home ranges in inaccessible habitats (e.g. cetaceans and highly 
migratory species; Tourani, 2022). Heterogeneity in detection due 
to availability will likely occur if individual animals readily traverse 
across a broad range that covers a large proportion of the study area, 
but smaller-scale survey effort changes in location and intensity at 
each occasion. Individual exposure to survey effort will vary greatly 
at each occasion due to the changing overlap between sampling 
and individual space use. In this example of a highly mobile species, 
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    |  3BADGER et al.

detection locations at each sampling occasion would not be repre-
sentative of the individual's movement patterns or space use and 
would go so far in describing an activity center as would a random 
cloud of points. If the population is further a sparsely distributed, 
elusive species, collected capture-recapture data will be inadequate 
to explicitly model spatial processes within the CR modelling frame-
work. However, extracting information on movement from available 
streams of data could improve models suffering from spatiotempo-
ral bias or variability in sampling by informing availability of target 
populations to survey effort, without the hefty data requirements 
of SCR.

Many authors have developed routes to utilise ancillary move-
ment information within non-spatial CR models. As a few exam-
ples, to account for lack of geographic closure, Ivan et al.  (2013) 
used telemetry data to calculate the portion of the population 
that occurred within the boundaries of the study site to correct 
density estimates. Others used location data to adjust density es-
timates for average home range size (Balme et  al.,  2009; Bitetti 
et  al.,  2006; Dillon & Kelly,  2008; Sharma et  al.,  2010; Soisalo 
& Cavalcanti,  2006). However, these ad hoc corrections do not 
incorporate movement information relative to survey efforts di-
rectly into the process it affects, that is detection probability. We 
propose a simple yet effective technique to incorporate animal 
telemetry data into non-spatial capture-recapture models, what 
we refer to as a pseudospatial model. Our modelling structure ac-
counts for spatiotemporal bias in survey efforts relative to ani-
mal space use to address biases in abundance estimates and other 
population parameters, but does not require explicit modelling of 
spatial processes. First, using simulated data, we compared con-
ventional or non-spatial CR models and our pseudospatial method 
to determine relative performance given spatiotemporal vari-
ability in sampling. Then, we apply this method to telemetry and 
photo-identification data collected on an endangered population 
of false killer whales (Pseudorca crassidens) resident to the main 
Hawaiian Islands. Our aim is to demonstrate that this method can 
generate abundance estimates with improved accuracy and preci-
sion and present its utility on a rare and highly mobile population 
that exhibits social structure.

2  |  MATERIAL S AND METHODS

This multistep process includes (1) analysing animal space use data, 
computing population-level utilisation distribution (UD) estimates or 
individual-level UDs and scaling to relevant groups (e.g. social group, 
sex, age) to estimate population-level animal space use; (2) analys-
ing spatial survey effort data, computing UD estimates for research 
efforts to obtain estimates of coverage; (3) determining availability 
of animals to survey coverage by finding the interaction between 
(1) and (2), or the overlap; and (4) incorporating this overlap meas-
ure within the detection process of a capture-recapture model. We 
will first describe these steps, then detail our simulation analysis to 
assess performance compared to traditional CR models, and finally 

apply this method to estimate abundance of a population of false 
killer whales in the main Hawaiian Islands, for which both capture-
recapture (Bradford et al., 2018) and satellite tag (Baird et al., 2010, 
2012) datasets exist.

2.1  |  Determining overlap between animal space 
use and survey effort

Obtaining reasonable UDs for animal space use and survey effort 
coverage (UDa and UDe, subscripted a and e to denote animal and ef-
fort, respectively) can be achieved using appropriate methodology 
for a given data type. The UDa should reflect population-level space 
use patterns for detection in survey efforts. Below, in Application to 
endangered main Hawaiian Islands insular false killer whales, we dem-
onstrate using kernel density estimates to do so with a sample of 
satellite telemetry tag data and GPS tracks from survey efforts.

In many systems, detection of individuals in a CR study may have 
a dependency structure, such as in species that exist in social groups 
or clusters, or where detection varies by sex. In these cases, the indi-
vidual UDs comprising UDa should be averaged accordingly (e.g. UDa,g 
for each grouping g) so that the variation in group detection due to 
survey coverage can be accounted for appropriately. Likewise, if an-
imals display temporal variability in movement and there are suffi-
cient data to do so, UDa may be expanded to be time-specific. Survey 
effort UDs should be split at the relevant temporal scale for mod-
elling, t, such that UDe,t reflects the survey effort coverage for that 
time step.

Though there are many methods to calculate overlap between 
two utilisation distributions, here we compute Bhattacharyya's 
affinity BA (Bhattacharyya, 1943):

where UDa(x, y) and UDe(x, y) are the UD values of the animals and sur-
vey effort, respectively, at the point (x, y).

2.2  |  Incorporating overlap into 
capture-recapture models

This overlap variable can be incorporated into capture-recapture 
models as a covariate in the detection process. Here we will demon-
strate using a state-space formulation of the Jolly–Seber (JS) open 
population model to estimate abundance (Jolly, 1965; Seber, 1965; 
see Kéry & Schaub, 2012 for further information). Individuals can 
be in one of three possible states: ‘not yet entered’, ‘alive’, and ‘dead’ 
within a state vector zi,t for each individual i  and time step t, re-
flected as a 1 for individuals in state ‘alive’ and 0 for states ‘not yet 
entered’ and ‘dead’. Transitions among these states is governed by 
two ecological processes: entry and survival.

Suppose we have an augmented population of M individuals, 
of which N are genuine and M − N are pseudo-individuals (Kéry & 

BAa,e = ∫x∫y
√

UDa(x, y) ×
√

UDe(x, y),
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4  |    BADGER et al.

Schaub, 2012). Entry from M to N is described using �, the removal 
entry probability, that is, the probability that governs movement 
from state ‘not yet entered’ to the state ‘alive’. The state of individual 
i  at the first occasion is determined by a Bernoulli trial with probabil-
ity � at the first time step:

Subsequent states are determined either by survival � for an in-
dividual already entered 

(

zi,t = 2
)

 or by entry, � t, for those that have 
not 

(

zi,t = 1
)

.
Thus, the state process is

The observation process conditions on the state process,

where pi,t is the probability of detecting individual i  at time t given it 
has entered the population, and logit

(

pi,t
)

= �t + � × BAa,e, with inter-
cepts �t, and �1 = �2 for identifiability.

Note that in this example, we are assuming that entry and de-
tection are time-variant and survival is constant. Fully time-varying 
models require further constraints for confounding variables 
(Gimenez et  al.,  2003). Then, population abundance in a given 
year Nt is defined as the number of individuals in the ‘alive’ state, 
Nt =

∑M

i

�

zi,t
�

.

2.3  |  Simulation

In order to test whether this pseudospatial JS model generates 
abundance estimates with greater accuracy and precision com-
pared to the more traditional model, we simulated animal move-
ments, survey effort, and resulting capture histories for a system 
in which animal space use varied among social groups and survey 
effort covered only a portion of the populations range and var-
ied nonrandomly over time. We considered a population of 300 
individuals composed of three social groups, with 100 individu-
als in each social group. Starting locations for group-level move-
ments and 10 time steps of survey effort were chosen at random, 
and subsequent movement and survey tracks were modelled as 
correlated random walks (using package adehabitatLT v. 0.3.26, 
Calenge, 2006). We simulated animal tracks to have a greater de-
gree of concentration for the wrapped normal distribution of turn-
ing angles than survey effort tracks, as survey efforts can tend 
to exhibit more tortuous, search-oriented behaviour than wide-
ranging animals. For each of 10 time steps, surveys would detect 
individuals with detection probability � if they were <2 km from 
the survey vessel. The resulting capture histories were then fit to 
a conventional JS open population model and the pseudospatial 
JS model outlined above in a Bayesian framework. Six simulated 
individuals from each group were telemetered, and their locations 

used to estimate the group-level utilisation distributions for which 
survey overlap was determined.

We considered two complications: time-varying group-level 
space use and low detectability. Time-varying group-level space use 
was manipulated via a starting location that was either static over 
the time series or time-variant, so the small sample of individuals 
tagged over the course of the study may not provide an adequate 
characterisation of space use. Detectability varies between low, 
� = 0.2, resulting in a sparse dataset, or high, at � = 0.8.

This procedure was repeated 30 times per set of conditions (high 
vs. low detectability, static vs. varying group space use) to observe 
the range of probabilistic outcomes in capture histories. For each 
model, we report the difference in posterior precision (SD), the num-
ber of inaccurate abundance estimates (see below), and the propor-
tion of iterations whose abundance estimates exhibit an inaccurate 
trend. We define an inaccurate abundance estimate as one where 
the 90% credible interval (CRI) of the posterior distribution did not 
contain the true population size. To detect inaccurate trends, we re-
gressed derived abundance estimates over time for each iteration 
of the Bayesian Markov chain Monte Carlo (MCMC), and defined an 
inaccurate trend if the 90% credible interval of the resulting slope 
parameter distribution was distinct from 0, as abundance should be 
static across the time series.

2.3.1  |  Model fitting and selection

A Bayesian framework was used for model fitting, selection and in-
ference using the software JAGS 4.2.0 through the R interface rjags 
(R version 4.2.2; Plummer, 2003, 2018; R Core Team, 2020). We used 
priors that are generally uninformative, namely Uniform(0,1) priors, 
for probabilistic parameters constrained to [0,1]. The parameter de-
scribing the effect of overlap, �, was given a diffuse Normal(0,1000) 
prior.

MCMC was used to sample the posterior distributions of 
the parameters of interest. For each model, we ran three chains 
with different sets of initial values. The first 10,000 MCMC 
samples were discarded as the burn-in after checking that con-
vergence was satisfactory. Convergence of chains to stationary 
distributions was visually evaluated using sample path plots 
in conjunction with the Brooks–Gelman–Rubin diagnostic r̂  
(Brooks & Gelman,  1998), with values close to 1.00 indicating 
adequate convergence. Chains were then run for 20,000 iter-
ations after burn-in, and every tenth iteration was retained for 
a total of 2000 MCMC samples used for inference. We deter-
mined that the overlap variable had an effect if a 95% credible 
interval of the posterior distribution of � did not include 0. We 
assessed support for inclusion of overlap using a measure of 
out-of-sample predictive ability of each model, the widely ap-
plicable information criterion (WAIC, Watanabe, 2010), where a 
model with a smaller WAIC is judged a better fit. These Bayesian 
modelling methods were also applied to the empirical data, de-
scribed below.

zi,1 ∼ Bernoulli
(

�1

)

.

zi,t+1 ∣ zi,t , … , zi,1 ∼ Bernoulli

(

zi,t × �i,t + � t+1

t
∏

k=1

(

1 − zi,k
)

)

.

yi,t ∣ zi,t ∼ Bernoulli
(

zi,t × pi,t
)

,
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    |  5BADGER et al.

2.4  |  Application to endangered main Hawaiian 
Islands insular false killer whales

The endangered resident population of false killer whales in the 
main Hawaiian Islands (MHI) provides a motivating platform to in-
vestigate methods to alleviate sampling bias concerns. This insular 
population is small (most recently estimated at 167 ± 23 individuals, 
Bradford et  al.,  2018), and individuals are highly mobile and fre-
quently move among island areas (spanning the entire MHI, Baird 
et al., 2012; Mahaffy et al., 2023), making them sparse throughout 
their range. This population is known to preferentially associate in 
social groups, hereafter referred to as ‘clusters’ (Baird et al., 2008; 
Mahaffy et al., 2023), and there is some evidence for cluster-specific 
space use patterns (Baird et  al.,  2012). When encountered during 
survey efforts, individuals and subgroups of the same social cluster 
are often spread out, travelling kilometres apart (Baird, 2016; Baird 
et al., 2008, 2010, 2012). The MHI insular population of false killer 
whales has declined in recent decades, likely due to interactions with 
fisheries, and was officially designated as Endangered under the US 
Endangered Species Act in 2012 (Oleson et al., 2010).

Numerous aerial and boat-based surveys, photo-identification, 
satellite-telemetry and genetic studies have made the MHI insular 
population the world's most thoroughly studied population of false 
killer whales (Baird,  2016). However, each of these data streams 
presents unique difficulties in estimating necessary metrics to mon-
itor this endangered population, such as abundance and population 
growth rate. For example, there is variable survey effort among 
the island areas of the MHI, and as this population is wide-ranging, 
these surveys will only encompass a small proportion of the popula-
tion's range on any given trip. Weather and sea conditions generally 
further restrict areas viable for visual sampling on a smaller scale; 
surveys almost exclusively conducted on leeward sides of islands 
protected from trade winds (Baird et  al., 2013). Differential space 
use by social groups and the biased nature of sampling could result 
in poor estimates of population abundance and trend.

While substantial work has been done to estimate abundance for 
this population (Bradford et al., 2018), conventional CR models can-
not appropriately account for known spatiotemporal variation and 
bias in sampling. As it is unclear to what proportion of the popula-
tion any analysis extends in any given year, resulting abundance es-
timates are difficult to interpret and incorporate into recovery plans. 
To demonstrate how our pseudospatial model may address these 
concerns, we fit one of the datasets used in Bradford et al.  (2018) 
to our pseudospatial model, assuming the same social structure 
identified at the time of Bradford et al. (2018) (3 social clusters), and 
compared these results to those generated from the conventional 
POPAN-formulated Jolly–Seber fit in Bradford et al. (2018).

2.4.1  |  Data collection

Data used in this analysis were sourced from dedicated nonsystem-
atic surveys conducted by Cascadia Research Collective (CRC) from 

2000 to 2015 (Figure 1) as part of an intensive research effort involv-
ing small boat surveys of odontocetes (i.e. toothed whales and dol-
phins). While CRC has undertaken surveys off all island areas within 
the MHI, not every area is surveyed every year, with most of the 
effort undertaken off of Hawai‘i Island (Baird et al., 2013). Generally, 
between 1 and 6 occasions of such efforts lasting 1–6 weeks were 
conducted throughout each year, with surveyed areas designed to 
maximise likelihood of animal encounter (details of the field op-
erations are provided in Baird et al., 2013). Even with this focused 
sampling, false killer whales are only encountered in about 4% of 
surveys. While on effort, CRC recorded location via an affixed GPS 
at 5-min intervals. In total, from 2000 to 2015, CRC completed 6710 
on-effort hours over 927 days traversing 108,216 km resulting in 41 
MHI false killer whale group sightings.

At each false killer whale sighting, researchers took photographs for 
individual identification based on the prevalence of permanent mark-
ings (e.g. nicks, notches) on the leading and trailing edge of the dorsal 
fin. For further details on the processing of these photographs, see 
Baird et al. (2008). In total, CRC's efforts from 2000 to 2015 resulted in 
a longitudinal photo-identification (‘photo-ID’) dataset of 143 individ-
uals with distinctive markings visible in high-quality photographs that 
can be translated into encounter histories for use in CR models (details 
of this process can be found in Bradford et al., 2018; Figure 2) to allow 
for comparison to the analysis in Bradford et al. (2018). These individ-
uals were assigned to 1 of 3 identified social clusters using the analy-
sis of network modularity explained in Baird et al.  (2012). Encounter 
data were compiled at an annual scale; individuals were recorded as 
encountered or not encountered each year. Tagging and photography 
was authorised under NMFS Scientific Research Permits 926, 731-
1509, 731-1774, 20605, and 15330 issued to CRC. Tagging protocols 
and procedures were approved by the Cascadia Research Collective 
Institute of Animal Care and Use Committee.

When crew expertise, ocean conditions and animal behaviour 
allowed, research efforts also involved the deployment of satellite 
tags (Baird et  al.,  2010, 2023). Between 2007 and 2021, whales 
were tagged using location-only satellite tags (SPOT-5 or SPOT-
6, Wildlife Computers) or location-and-dive behaviour- transmit-
ting satellite tags (SPLASH10 or SPLASH10-F (Fastloc®-GPS), 
Wildlife Computers) in the Low-Impact Minimally-Percutaneous 
External-electronics Transmitter (LIMPET) configuration (Andrews 
et al., 2008). Telemetry tagging was undertaken under relevant per-
mits from the National Marine Fisheries Service (NMFS), and tagging 
methods were approved by the Institutional Animal Care and Use 
Committees of CRC and the NMFS Pacific Islands Fisheries Science 
Center (PIFSC). Tags were deployed with a pneumatic projector and 
were attached to the dorsal fin or just below the fin of the whales 
by two 6.7 cm titanium darts with backward facing petals. Tags were 
duty-cycled to only transmit during the hours with the highest prob-
ability of a satellite being overhead. Tag transmission schedules var-
ied by tag type and by year.

Prior to analyses, location data were filtered through the 
Douglas–Argos Filter (Douglas et  al.,  2012; via Movebank, 
Kranstauber et al., 2011) to remove unrealistic locations based on 
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6  |    BADGER et al.

F I G U R E  1  (Top) Small boat tracks from odontocete surveys conducted by Cascadia Research Collective from 2000 to 2015 in the main 
Hawaiian Islands. Black line indicates population boundary (Bradford et al., 2015). Colour represents survey year, in continuous scale with 
darker colours indicating earlier years of the time series. (Bottom) Left to right, depicts in order the cluster-level space use of main Hawaiian 
Islands insular false killer whales determined from kernel density estimators of location data from 44 tags deployed on individuals from the 
three social clusters from 2007 to 2021.

F I G U R E  2  Summary information for 
false killer whale group sightings over 
16 years (2000–2015), comprised of 143 
individuals.
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    |  7BADGER et al.

travelling speeds and turning angles, using settings defined in Baird 
et  al.  (2012). Fastloc-GPS locations for relevant tag deployments 
(n = 2) were filtered by removing locations with residual values 
greater than 35 and time errors greater than 10 s (Dujon et al., 2014) 
and subsequently running the data through a general speed filter via 
Movebank (Kranstauber et al., 2011). When applicable, one of each 
pair of tagged individuals moving in concert were removed prior to 
analyses to reduce pseudoreplication (see Schorr et  al.,  2009 for 
details). The resulting dataset included 44 deployments (Cluster 1, 
n = 31; Cluster 2, n = 4; Cluster 3, n = 9), ranging from 12 to 199 days of 
data (mean = 62.5/median = 48.8) that were analysed for population-
level space use (Figure 1).

2.4.2  |  Model form and fitting

Analysing animal telemetry data
First, for each telemetered false killer whale, locations were fit to 
a continuous-time correlated random walk (CTCRW) model using 
the R package crawl (v. 2.2.1, Johnson et al., 2008) to account for 
location error and predict locations (paths) from observed animal 
locations. These imputed paths were rerouted around impen-
etrable terrain features (i.e. land) using the R package pathroutr 
(London, 2020). Then individual utilisation distributions were de-
scribed using a kernel density estimator (KDE) in the R package 
ks (Duong, 2007). For the KDE estimator, we use a simple plug-in 
band-width hi equal to,

where Σi is the covariance matrix among locations for the ith indi-
vidual, and nei is the effective sample size (ESS) of the ith individual's 
telemetry dataset (Bartoszek, 2016). The ESS uses the correlation 
structure of the CTCRW model to determine the effective number 
of observations that will be less than the total number of observed 
locations that will inflate the kernel size. This approach is similar to 
the autocorrelated kernel density estimate of Fleming et al.  (2015) 
in that it seeks to produce a more predictive UD that accounts for 
the limited time observation of an animal's correlated travel. The full 

form of the kernel density estimator for the ith telemtered individ-
ual, f̂ i, is given below.

Let 
(

s1, … , sn
)

 be telemetry locations, such that sj =
{

xj , yj
}

 where 
xj and yj are coordinates in each cardinal direction, j ∈

{

1, … , ni
}

, 
and ni is the total number of locations for the ith individual

where K is a Gaussian kernel, that is K(u) = 1
√

2�
e−

1

2
u2. The resulting fi 

were then normalised to sum to 1 over the study area.
The resulting UD provides a density surface for individual pres-

ence in space; however, in order to use the telemetry data informa-
tion for non-telemetered animals in the CR population, we provide 
an estimate of population-level space use to determine animal avail-
ability to our survey efforts. As these island-associated false killer 
whales are known to be affiliated as stable distinct social groups 
or clusters, individual UDs were averaged by social cluster mem-
bership (Figure  3), henceforth referred to as UDc(s) = meani

(

fi(s)
)

, 
which is subscripted c to denote cluster. There are many ways we 
might weight individual UDs when averaging (see Conn et al., 2022); 
however, as we aimed to develop an overall use index, we used the 
straight average UD.

Though the CR dataset is filtered to 2000–2015, we included 
all available tag data (2007–2021) to inform the cluster-level utilisa-
tion distributions. We assume, in our choice to use all available data 
and estimate a time-invariant cluster UD, that the greatest source 
of variation in movement patterns is due to cluster membership and 
that cluster membership is fixed and individuals do not switch clus-
ters. While it is unlikely that cluster-specific space use for this pop-
ulation has remained entirely stationary over 15 years, sample sizes 
for each cluster inhibit our ability to estimate time-specific UDs.

Analysing survey effort GPS data
Effort data including timestamps and locations, such as tracks via an 
affixed GPS in the case of the false killer whale survey effort data, 
can be analysed similarly. We compute survey effort coverage using 
a simple kernel density estimate of survey tracks from each year, 
subsequently referred to as UDe,t for t ∈ {1, … , T}, where T is the 

hi = n
−1∕3

ei
× Σi ,

f̂ i =
1

ni × hi

ni
∑

j=1

K

(

s − sj

hi

)

,

F I G U R E  3  Location data from Cluster 1 false killer whales in the Main Hawaiian Islands over the time series, split into early, mid- and late 
periods to depict temporal variation in cluster space use.
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8  |    BADGER et al.

data time series length. Bandwidth should be platform-specific, here 
based on the average sighting distance from survey vessels of about 
1.5 km (Baird et al., 2013).

2.4.3  |  Incorporating overlap into CR model

We accounted for the lack of independence from social cluster in 
the detection process. After computing the overlap of the clus-
ter UDs with time-specific survey effort, the resulting overlap 
measurements were both time- and cluster-specific (Figure  4). 
Estimating cluster-by-time interaction terms for detection pa-
rameters within a CR model requires rich data, and our method 
is effectively equivalent, costing only one additional parameter. 
However, we must assume that the greatest source of variation 
in cluster detection is overlap with survey efforts. The conven-
tional CR model used in Bradford et al. in 2018 simply estimated 
varying intercepts by cluster. The model for the detection pro-
cess was

where � is the intercept, c refers to the cluster assignment of individ-
ual i , and t refers to time step. The covariate overlapt,ci refers to the 
standardised Bhattacharyya's affinity BA overlap for each cluster BAc,e,t 
measure over time, that is overlapc,t =

BAc,e,t − �

�
, where � =

1

T

∑T

1
BAc,e,t 

and � =

√

Σ(BAc,e,t−�)
2

T
.

For comparison of estimability, we also fit models with inter-
active cluster and time effects, such that the detection process 
becomes:

Priors for logit−1� and entry probability � t were given uninfor-
mative Uniform(0,1) distributions, but previous analyses and expert 
knowledge of life history of this species (i.e. long-lived) indicate high 

survival, so we used an informative Beta(8,1) prior for the temporally 
constant �.

Importantly, using photo-ID for CR analyses allows us to only 
estimate the number of distinctive individuals, as nondistinctive in-
dividuals will never be ‘resighted’ and included in our dataset. About 
25% of individuals in sighted groups are nondistinctive, though this 
varies by year and group. Estimates of Nt here correspond to the 
number of distinctive individuals present in the population in the 
given year. Though not included in this analysis, this value would 
typically be adjusted for an estimated proportion distinctive from 
group sightings in post-processing (see Bradford et al., 2018).

3  |  RESULTS

3.1  |  Simulation experiment

The results from testing the pseudospatial model on simulated mark-
resight and telemetry data demonstrated that, overall, including the 
overlap covariate in the detection process substantially improves 
accuracy of posterior distributions of derived population size and 
population trend (Table 1). The pseudospatial model was especially 
effective when animal space use patterns were consistent over time 
and thus well-characterised, but still performed marginally better than 
the conventional model when these conditions were not met. If space 
use were constant and encounters common, the pseudospatial model 
accurately estimated population size and trajectory 93% and 88% of 
the time, versus conventional models at 87% and 81%, respectively.

3.2  |  Application to main Hawaiian Islands insular 
false killer whales

We fit the conventional JS model and the pseudospatial JS model to 
the main Hawaiian Islands false killer whale photo-ID data and found 

logit
(

pi,t
)

= �t + � × overlapt,ci ,

logit
(

pi,t,c
)

= �t,c.

F I G U R E  4  Overlap of survey efforts 
by Cascadia Research Collective and 
social cluster-level space use of the main 
Hawaiian Island insular false killer whale 
population from 2000 to 2015, calculated 
using Bhattacharyya's affinity.
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    |  9BADGER et al.

a strong preference for the pseudospatial JS model (∆WAIC = 26.7, 
Figure 5). Models including an interactive effect of cluster and time 
failed to converge, and even parameters with r̂  near the convention-
ally acceptable maximum (1.1) had diffuse posterior distributions. 
Posterior density of �, the parameter describing the effect of overlap 
on detection probability, was distinctly positive, such that surveys 
with greater coverage of cluster-level space use had greater proba-
bility of encountering false killer whales. The inclusion of the overlap 
of animal space use and survey efforts allowed for greater precision 
in posterior distributions of yearly estimated number of distinctive 
individuals (Figure 5). The pseudospatial model estimated these de-
rived quantities with, on average, 1.68× greater precision than the 
conventional model. Throughout the time series, the pseudospatial 
model point estimates of distinctive individuals were marginally 

greater than conventional model, though 95% credible intervals 
overlap, indicating these estimates are not statistically distinct.

4  |  DISCUSSION

Here we demonstrate a simple method for accounting for spatiotem-
poral variation in sampling that affects animal availability in survey 
efforts. Our simulation results show that models including the over-
lap between survey efforts and animal space use provide greater ac-
curacy and precision in estimating abundance and population trend. 
Where simultaneous re-sight and space use data are available, this 
method can be used to obtain robust estimates of population abun-
dance even for sparse datasets on rare and elusive species.

For populations such as endangered false killer whales in the 
MHI, spatiotemporal variation in survey efforts has rendered esti-
mates from conventional models that are difficult to interpret. As 
this population is subdivided into a number of discrete social groups 
(Baird et al., 2012; Mahaffy et al., 2023; Martien et al., 2019), the 
variation in areas of their range that are surveyed in any given year 
induces a cluster-by-time effect on probability of detection. We fit 
models that accounted for an additive cluster and time-varying de-
tection but estimation of the parameters involved in the interactive 
effect was strained due to the sparse resight data, with high uncer-
tainty and low agreement among Markov chains. Assuming cluster-
level movements are well-characterised by our telemetry sample, 
our technique sufficiently accounts for the cluster-by-time effect 
using telemetry data. For this population, the pseudospatial model 
estimated abundances that were more precise and slightly greater 
than the conventional JS model (Figure 5). This discrepancy is to be 
expected; because the conventional model does not account for the 
partial sampling of the study area each year, we expect the result-
ing estimates of population size in any given year to be biased low 
(Bradford et al., 2018). Capture heterogeneity of any kind is known 
to be associated with underestimates of population size when using 

TA B L E  1  Performance of the pseudospatial and conventional 
Jolly–Seber open population model fit to 30 simulated datasets 
under varying conditions.

Conventional/pseudospatial

Encounters  
rare

Encounters 
common

% with true N

Space use constant 76%/90% 87%/93%

Space use variable 75%/78% 86%/91%

% with true trend

Space use constant 67%/78% 81%/88%

Space use variable 62%/67% 70%/74%

Increase in posterior precision, mean (conventional σ/pseudospatial σ)

Space use constant 1.89 1.67

Space use variable 1.09 1.07

Note: % with true N and % with true trend refer to the accuracy (90% 
CRI) of posterior distributions of abundance and the slope parameter in 
a regression fit to yearly abundance estimates.

F I G U R E  5  Abundance estimates of 
distinctive MHI insular false killer whales, 
2000–2015, from the conventional 
Jolly–Seber population model (grey) as 
fit to CRC data by Bradford et al. (2018), 
and the pseudospatial Jolly–Seber model 
(black) fit to those same data. Points and 
bars represent posterior means and 95% 
credible intervals, respectively.
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10  |    BADGER et al.

the Jolly–Seber model (Carothers,  1973). Incorporating telemetry 
data into abundance estimation will greatly aid recovery metric ac-
curacy and power to detect trends but can also bolster stakeholder 
confidence in management outcomes for this population.

Generally, the relative performance of this method relies on 
how well movement patterns and space use of target population are 
characterised, that is, the animals sampled with telemetry are rep-
resentative of the animals in the target population. Due to the lack 
of available data on MHI false killer whales, this means that we are 
limited to assume that cluster-level space use has remained reason-
ably consistent over the time series. Previous analyses of visual and 
tag data show spatial partitioning among social clusters that appear 
to be consistent over time (Baird et al., 2008, 2021; Figure 3) and 
genetic and capture-recapture data show that these clusters are sta-
ble over time (Mahaffy et al., 2023; Martien et al., 2019). Limited tag 
deployment sample size from the three social clusters precluded us 
from estimating time-specific space use kernels. Further, we assume 
that variation in individual space use patterns is mostly explained by 
social cluster membership, and any variation due to variables such 
as sex, life stage, and individual is minimal. Variation in the physical 
environment may also play an influential role in their space use pat-
terns, although such variation is not expected to influence the scale 
of space-use considered here (i.e. yearly). We did explore the effect 
of poorly characterised space use patterns on model performance in 
our simulation and found that the pseudospatial model performed 
marginally better than the conventional model even with temporal 
changes in social group space use. Therefore, we can be relatively 
confident that we are not inducing additional bias and reducing the 
quality of the estimates below that of the traditional JS model. When 
space use is not well-characterised, the model may still benefit from 
the UD describing some variation due to survey effort, as the survey 
effort UD is not normalised. Future simulations may explore other 
forms of variation in movement patterns that may affect model per-
formance, as well as different population trends, sizes, disparate 
group abundances and accuracy in model parameter estimates (e.g. 
detection error, survival).

The improvement in model performance with the incorporation 
of information on space use (from telemetry data) here follows that 
of previous work with spatial capture-recapture tools, while avoid-
ing distributional assumptions about activity centers or movement 
parameters and complex modelling frameworks. It is, therefore, gen-
erally, more accessible to non-experts. Our simple, novel method 
is generalisable to many different biological systems for which si-
multaneous animal space use and survey data exist and can be im-
plemented in any inferential method that accounts for imperfect 
detection. Incorporating the relationship between animal movement 
and survey effort in the estimation of abundance makes effective 
use of available data and holds promise as a framework for monitor-
ing and assessing wildlife populations.
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